

Technology Compendium for Energy Efficiency and Renewable Energy Opportunities in Ceramic Sector

Ahmedabad Ceramic Cluster

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Disclaimer

This document is prepared to provide overall guidance for conserving energy and costs. It is an output of a research exercise undertaken by Confederation of Indian Industry (CII) supported by the United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for the benefit of the *Ceramic Industry located at Ahmedabad, Gujarat, India*. The contents and views expressed in this document are those of the contributors and do not necessarily reflect the views of CII, BEE or UNIDO, its Secretariat, its Offices in India and elsewhere, or any of its Member States.

Promoting Energy Efficiency and Renewable Energy in Selected MSME Clusters in India

(A GEF funded project being jointly implemented by UNIDO & BEE)

Compendium of

Energy Efficiency and Renewable Energy Technologies for Ahmedabad Ceramic Cluster

September 2020

Developed under the assignment

Scaling up and expanding of project activities in MSME Clusters

Prepared by

Confederation of Indian Industry 125 Years - Since 1895

CII Sohrabji Godrej Green Business Centre Survey No.64, Kothaguda Post, R R District,

Hyderabad, Telangana 500084 INDIA

Acknowledgement

Acknowledgement

This assignment was undertaken by Confederation of Indian Industry (CII) as a project management consultant under the Global Environment Facility (GEF) funded project 'Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India.' The Technology Compendiums are meant to serve as an informative guide to the clusters that the project is currently working in and also to the other potential clusters across the country.

CII would like to express its gratitude to United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for having provided the guidance in the completion of this assignment.

CII would like to specially thank all the professionals for their valuable contributions in finalizing the different technology compendiums developed under the assignment. CII is grateful to Mr. Abhay Bakre, Director General, BEE, Mr R K Rai, Secretary, BEE and Mr. Milind Deore, Director, BEE for their support and guidance during the assignment. CII would like to express its appreciation to Mr. Sanjaya Shrestha, Industrial Development Officer, Energy Systems and Infrastructure Division, UNIDO, for his support in execution of the assignment. We would like to thank Mr. Suresh Kennit, National Project Manager, and the entire Project Management Unit (PMU) for their timely coordination and valuable inputs during the assignment.

CII would like to take this opportunity to thank all the MSME unit owners, local service providers and equipment suppliers for their active involvement and valuable inputs in the development of the technology compendiums. We extend our appreciation to the different Industry Associations in the clusters for their continuous support and motivation throughout the assignment.

Finally, we would like to thank each and every personnel from CII team who have been actively involved at every step of the compilation and whose tireless and valuable efforts made this publication possible.

CII Team

Table of Contents

List of Figures	9
List of Tables	12
List of Abbreviations	16
Unit of Measurement	18
About the Project	21
About the Technology Compendium	23
Executive Summary	27
1. Indian Ceramic Industry	33
1.1. Background	33
1.2. Ceramic Sector Growth Prospects	35
1.3. Ahmedabad Ceramic Cluster	36
2. Manufacturing Process and Energy Consumption	39
2.1. Ceramic Product Value Chain	39
2.2. Process Flow for Tile and Pottery Ware Manufacturing	41
2.2.1. Ceramic Tile Manufacturing Process:	41
2.2.2. Ceramic Pottery Ware Manufacturing Process	45
2.3. Energy Consumption in Tiles & Pottery Ware Manufacturing Units	48
2.4. Technology Status in Ahmedabad (Himatnagar & Naroda) Ceramic Sector	50
2.5. Benchmarking	52
3. Energy Efficiency Opportunities	57
3.1. Energy Efficiency in Ceramic Tile and Pottery Ware Units	57
3.2. Energy Efficiency Measures	
3.2.1. Energy Efficiency in Tunnel Kiln	59
3.2.2. Energy Efficiency in Raw Material Preparation Process	60
3.2.3. Energy Efficiency in Utilities	61
4. Energy Efficient Technologies – Case Studies	_
4.1. Case studies for tile manufacturing units	
4.1.1. Case studies in kiln	
4.1.1.1. Waste heat recovery in roller kiln	66
4.1.1.2. Energy efficient coating inside kiln to reduce the radiation losses in kiln and reduce fuel consumption	70
4.1.1.3. Improvement of kiln insulation in roller kiln to reduce radiation losses	73
4.1.1.4. Excess air control system to maintain optimum air to fuel ratio in Kiln	76
4.1.2. Case studies in Raw Material Blending	79
4.1.2.1. Reduction in ball mill power by installation of VFD on Ball Mill drive	
4.1.2.2. High speed blunger in place of ball mill for raw material grinding	
4.1.2.3. High alumina media in glaze ball mill in the place natural stone/pebble	84

4.1.	2.4. Replacement of memcient centinugatians with	
	energy efficient fans in spray dryer	
4.1.3. Case	e studies in Utilities	89
4.1.	3.1. Installation of VFD in Screw Compressor to Avoid Unloading	89
4.1.	3.2. Installation of screw compressor with VFD in place of reciprocating compressor	92
4.1.	3.3. Energy conservation in compressor by modifying airline system	95
4.1.	3.4. Installation of energy efficient pumps	98
4.1.	3.5. Installation of energy efficient motors in place of old rewinded motors in ball mill	01
4.1.	3.6. Maximum demand controller for avoiding excess contract demand penalty1	04
4.1.	3.7. Power factor correction & Harmonic Mitigation at main LT incomer1	07
4.1.	3.8. Installation of VFD on agitator motor1	10
4.1.	3.9. Installation of on-off controller system in agitator motor 1	12
4.1.	3.10. Installation of energy efficient motor in place of existing conventional motors in agitator system1	.14
4.1.4. Case	e studies in renewable energy 1	.17
4.1.	.4.1. Solar rooftop system 1	.17
4.1.5. New	& innovative technologies1	22
4.1.	5.1. Solar-Wind hybrid system1	22
4.1.	5.2. CFD application for improving heat transfer in spray dryer1	26
4.1.	.5.3. Hydroxy gas combustion in kiln firing in roller kiln1	30
4.1.	.5.4. Optimization of water consumption by installation of water softener unit 1	32
4.1.	.5.5. Installation of Energy Management System1	35
4.1.	.5.6. Insulation improvement in Hot air generator for spray dryer1	38
4.1.	5.7. Excess air control system to maintain optimum air to fuel ratio in Hot air generator (HAG)1	.41
4.2. Case studi	es for pottery ware manufacturing units1	44
4.2.1. Case	e studies in Kiln1	44
4.2	.1.1. Waste heat recovery in tunnel kiln1	44
4.2	.1.2. Energy efficient coating inside kiln to reduce the radiation losses in kiln and reduce fuel consumption1	47
4.2	.1.3. Low thermal mass for reduction of kiln car losses in tunnel kiln	50
4.2	.1.4. Improvement of insulation in kiln to reduce radiation losses	54
4.2	.1.5. Excess air control system to maintain optimum air to fuel ratio in kiln	57
4.2.2. Cas	e studies in Raw Material Blending1	60
4.2	.2.1. Reduction in ball mill power by installation of VFD on ball mill drive1	60
4.2	.2.2. High speed blunger in place of ball mill for raw material grinding1	62
4.2	.2.3. High alumina media in glaze ball mill in place of natural stone/pebble1	65
4.2.3. Cas	e studies in Utilities1	67
4.2.	.3.1. Retrofit of energy efficient ceiling fans in place of conventional fans1	67

4.2.3.2. Transvector nozzle in compressed air hose pipe for mould cleaning application	170
4.2.3.3. Maximum demand controller for avoiding excess contract demand penalty	173
4.2.3.4. Installation of on-off controller system in agitator motor	176
4.2.3.5. Installation of Energy efficient motor in place of existing conventional motors in agitator system	178
4.2.4. Case studies in renewable energy	181
4.2.4.1. Solar rooftop system	181
4.2.5. New & innovative technologies	186
4.2.5.1. Solar-Wind hybrid system	186
4.2.5.2. Hydroxy gas combustion in kiln firing	190
4.2.5.3. Installation of Energy Efficient burners in place of existing old conventional burners in kiln firing	192
s. Conclusion	105

List of Figures

34
39
.41
.41
42
42
42
43
43
43
44
45
45
46
46
46
47
47
47
48
49
•57
58
58
66
67
67
70
70
·73
.73
.74
.77
.81
82
84

Figure 37: High Alumina Ball	84
Figure 38: Typical characteristic curve of centrifugal fan	86
Figure 39: Capacity control of compressor.	90
Figure 40: Reciprocating Compressor	92
Figure 41: Existing compressed air piping	95
Figure 42: HDPE Aluminum Pipeline	95
Figure 43: Percentage loading for energy efficient motors	101
Figure 44: Energy Efficient Motors	102
Figure 45: Demand variation with and without demand control	
Figure 46: Operation of hybrid filter	107
Figure 47: Connection diagram	108
Figure 48: Reduction in kVA with & without operation of hybrid flter	108
Figure 49: Percentage loading for Energy Efficient motors	114
Figure 50: Energy Efficient Motors	115
Figure 51: Solar Irradiance	117
Figure 52: Solar wind hybrid system	122
Figure 53: Hybrid mill connected to supply	123
Figure 54: Hybrid mill connected to loads	123
Figure 55: Spray Drying Process	126
Figure 56: Particle flow pattern and velocity distribution inside the chamber	127
Figure 57: CFD Model of main drying chamber	127
Figure 58: Contours of moister concentration and temperature distribution inside the	
chamber	
Figure 59: HHO Gas Generator	
Figure 60: Water softener unit	_
Figure 61: Components of Energy Management System	
Figure 62: Spray dryer system	138
Figure 63: Thermal images of Hot gas generator duct connecting to cyclone separator	
Figure 64: Spray dryer system	141
Figure 65: Implementation of WHR system in kiln – Use of hot air as combustion air	
Figure 66: Various Zones in Kiln	147
Figure 67: Surface temperature at firing zone in kiln	147
Figure 68: Existing high thermal mass refractory in kiln car	150
Figure 69: Low thermal mass in Kiln car	151
Figure 70: Firing Cycle	154
Figure 71: Thermal Image of Kiln	154
Figure 72: Quantity of Heat loss from Surface vs temperature	155
Figure 73: PID & VFD based excess air control system	158

${\sf Technology\ Compendium-Ahmedabad\ Ceramic\ Cluster}$

11

Figure 74: Conventional Ball Mill system	162
Figure 75: High Speed Turbo Blunger	163
Figure 76: Mined stone pebbles	165
Figure 77: High alumina balls	165
Figure 78: Transvector Nozzle	170
Figure 79: Demand Variation with and without demand control	174
Figure 80: Percentage loading for energy efficient motor	178
Figure 81: Energy efficient motor	179
Figure 82: Solar Irradiance	181
Figure 83: Solar-wind hybrid system	186
Figure 84: Hybrid mill connected to supply	187
Figure 85: Hybrid mill connected to loads	187
Figure 86: HHO Gas Generator	190
Figure 87: High velocity burner	192
Figure 88: High Velocity Burner with Flame	192
Figure 89: Perfect combustion with correct air fuel to ratio	193
Figure on Improper air to fuel ratio	100

List of Tables

Table 1: List of technologies for tile manufacturing units	28
Table 2: List of technologies for pottery ware units	29
Table 3: Top 5 Ceramic tile manufacturing countries of the world (in MSM)	33
Table 4: Cluster level details	34
Table 5: Energy consumption overview for tile manufacturing unit	48
Table 6: Energy consumption overview for pottery ware manufacturing unit	48
Table 7: Technology Status – Ahmedabad Ceramic Sector	50
Table 8: Product wise specific energy consumption for units	52
Table 9: Industry benchmark for Indian Ceramic Products	52
Table 10: Equipment wise specific energy consumption – Floor tile unit	53
Table 11: Equipment wise specific energy consumption – Wall tile unit	54
Table 12: Equipment wise specific energy consumption – Vitrified tile unit	54
Table 13: Energy efficiency measures in kiln	59
Table 14: Energy efficiency in raw material preparation process	60
Table 15: Energy efficiency in utilities	6
Table 16: Case Studies for ceramic tile manufacturing unit	63
Table 17: Case Studies for pottery ware manufacturing unit	62
Table 18: Cost benefit analysis – WHR system in roller kiln	68
Table 19: Technology supplier – Waste Heat Recovery in kiln	69
Table 20: Zone wise average temperature in kiln	70
Table 21: Zone wise temperature after applying energy efficient coating in kiln	7
Table 22: Cost benefit analysis – Energy efficient coatings in kiln in tile manufacturing unit	7
Table 23: Technology Supplier Details – Energy efficient coatings in kiln	72
Table 24: Cost benefit analysis – Kiln insulation improvement	74
Table 25: Technology supplier details – Kiln insulation	75
Table 26: Flue gas analysis & excess air in one of the kiln	76
Table 27: Cost benefit analysis – Excess air control system in kiln	77
Table 28: Technology supplier details — Excess air control system in kiln	78
Table 29: Cost Benefit analysis – VFD in ball mill drive	79
Table 30: Technology Supplier details for VFD	80
Table 31: Cost benefit analysis – High speed blunger	82
Table 32: Technology supplier details – High speed blunger technology	83
Table 33: Cost benefit analysis – High Alumina balls for grinding in ball mill	8
Table 34: Technology Supplier Details – Alumina Lining and Grinding Pebbles	81
Table 35: Operating parameters of existing fans	87

Table 36: Cost Benefit Analysis – Energy efficient centrifugal fans	87
Table 37: Technology supplier details – Energy efficient centrifugal fan	88
Table 38: Compressor loading pattern	89
Table 39: Cost Benefit Analysis – VFD in screw compressor	90
Table 40: Technology Supplier Details – VFD for screw compressor	91
Table 41: Cost Benefit Analysis – Screw compressor with VFD in place of reciprocating compressor	93
Table 42: Technology Supplier details – Screw compressor with VFD	94
Table 43: Cost benefit analysis – HDPE aluminium pipe	96
Table 44: Technology Supplier Details – HDPE Aluminum Piping	97
Table 45: Comparison between conventional pump set and S4RM pump	98
Table 46: Cost Benefits Analysis EE Pumps	99
Table 47: Technology Supplier Details – Energy efficient pumps	100
Table 48: Cost Benefit analysis – Energy efficient motor for ball mill	102
Table 49: Technology Suppliers – Energy Efficient motors for ball mill	103
Table 50: Cost Benefit Analysis – Maximum Demand Controller	105
Table 51: Technology Supplier – Maximum demand controller	106
Table 52: Cost Benefit Analysis – Power factor improvement	109
Table 53: Technology Supplier – Power factor improvement hybrid filter	109
Table 54: Cost benefit analysis – VFD in agitator motor	110
Table 55: Technology Supplier details – VFD	111
Table 56: Cost Benefit analysis – On off controller system in agitation system	112
Table 57: Technology Supplier details – On-off controller system for agitator	113
Table 58: Cost Benefit analysis – Energy efficient motors in agitation system	115
Table 59: Technology Supplier details – Energy efficient motor	116
Table 60: Site Specification – For Solar PV	117
Table 61: Features/requirements for Grid Connected Solar PV Systems (Rooftop)	118
Table 62: Cost Benefit Analysis – Solar PV Systems	120
Table 63: Technology Supplier Details – Solar Rooftop System	120
Table 64: Cost Benefit Analysis – Solar Wind Hybrid Systems	124
Table 65: Technology Supplier Details – Solar-Wind Hybrid Systems	125
Table 66: Cost Benefit analysis – CFD for spray dryer	128
Table 67: Technology supplier details – Computational fluid dynamics (CFD)	129
Table 68: Cost benefit analysis – HHO system for kiln	131
Table 69: Supplier details – HHO system for kiln	131
Table 70: Cost benefit analysis – Improved water quality in ball mill	133
Table 71: Supplier details – Industrial water softener	134
Table 72: Cost benefit analysis – Energy Management System	136

Table 73: Technology supplier details – Energy Management System	137
Table 74: Cost benefit analysis – Insulation improvement in HAG for spray dryer	139
Table 75: Technology supplier details – Insulation improvement in HAG	140
Table 76: Cost benefit analysis – Excess air control system in HAG	142
Table 77: Technology supplier details – Excess air control system	143
Table 78: Cost benefit analysis – Waste heat recovery	145
Table 79: Technology Supplier Details – Waste Heat Recovery in kiln	146
Table 8o: Zone wise average surface temperature in Kiln	147
Table 81: Zone wise temperature after applying energy efficient coating in kiln	148
Table 82: Cost benefit analysis – Energy Efficient coatings in kiln	148
Table 83: Technology Supplier Details – Energy efficient coatings in kiln	149
Table 84: Cost benefit analysis – Low thermal mass in kiln car	151
Table 85: Technology supplier details – Low thermal mass in kiln car	152
Table 86: Low thermal mass – Morbi Cluster Reference	153
Table 87: Low thermal mass – Thangadh Cluster Reference	153
Table 88: Low thermal mass – Naroda Cluster Reference	153
Table 89: Cost benefit analysis – Kiln insulation Improvement in pottery ware unit	155
Table 90: Technology supplier details – Kiln insulation	156
Table 91: Flue gas analysis & excess air in one of the kiln	157
Table 92: Cost benefit analysis – Excess air control system in kiln in pottery ware unit	158
Table 93: Technology supplier details – Excess air control system in kiln	159
Table 94: Cost benefit analysis – VFD in ball mil in pottery ware unit	160
Table 95: Technology Supplier details for VFD	161
Table 96: Cost benefit analysis – High speed blunger	163
Table 97: Technology supplier details – High Speed Blunger Technology	164
Table 98: Cost benefit analysis – High alumina ball for grinding in ball mill	165
Table 99: Technology Supplier Details – High alumina balls	166
Table 100: Cost benefit analysis – Energy efficient ceiling fans	168
Table 101: Technology Supplier Details – BLDC Energy Efficient ceiling fan	169
Table 102: Cost Benefit Analysis – Transvector Nozzles	171
Table 103: Technology Supplier Details – Transvector Nozzle	172
Table 104: Cost Benefit Analysis – Maximum Demand Controller	174
Table 105: Technology Supplier — Maximum Demand Controller	175
Table 106: Cost Benefit analysis – On off controller system in agitation system	176
Table 107: Technology Supplier details — On-off controller system for agitator motor	177
Table 108: Cost Benefit analysis – Energy efficient motors in agitation system	179
Table 109: Technology Supplier details – Energy efficient motors	180
Table 110: Site Specification – Solar radiation at Naroda	181

${\sf Technology\ Compendium-Ahmedabad\ Ceramic\ Cluster}$

15

Table 111: Features/requirements for Grid Connected Solar PV Systems (Rooftop)	182
Table 112: Cost Benefit Analysis – Solar PV Systems	184
Table 113: Technology Supplier Details – Solar rooftop system	184
Table 114: Cost Benefit Analysis – Solar Wind Hybrid Systems	188
Table 115: Technology Supplier Details – Solar-Wind Hybrid Systems	189
Table 116: Cost benefit analysis – HHO gas for kiln firing	191
Table 117: Supplier details – HHO gas for kiln firing	191
Table 118: Cost benefit analysis – Energy efficient burner	194
Table 119: Technology supplier details – Energy Efficient Burner	194

List of Abbreviations

AC	Alternating Current
APFC	Automatic Power Factor Controller
BEE	Bureau of Energy Efficiency
BLDC	Brushless Direct Current
CAGR	Compound Annual Growth Rate
CFD	Computational Fluid Dynamics
CII	Confederation of Indian Industry
CUF	Capacity Utilisation Factor
DC	Direct Current
DG	Diesel Generator
DPR	Detailed Project Report
EE	Energy Efficient
EUR	Euro
GCRT	Grid Connected Roof top
GCV	Gross Calorific Value
GEF	Global Environment Facility
GHG	Greenhouse Gas
GI	Galvanized Iron
HDPE	High Density Poly Ethylene
ННО	Hydroxy gas
IEEE	Institute of Electrical and Electronics Engineers
INR	Indian Rupee
IoT	Internet of Things
ISO	International Standards Organization
LED	Light Emitting Diode
LSP	Local Service Provider
LT	Low Tension
MNRE	Ministry of New and Renewable Energy
MPPT	Maximum Power Point Tracker
MLC	Multi Layer Composite Pipe

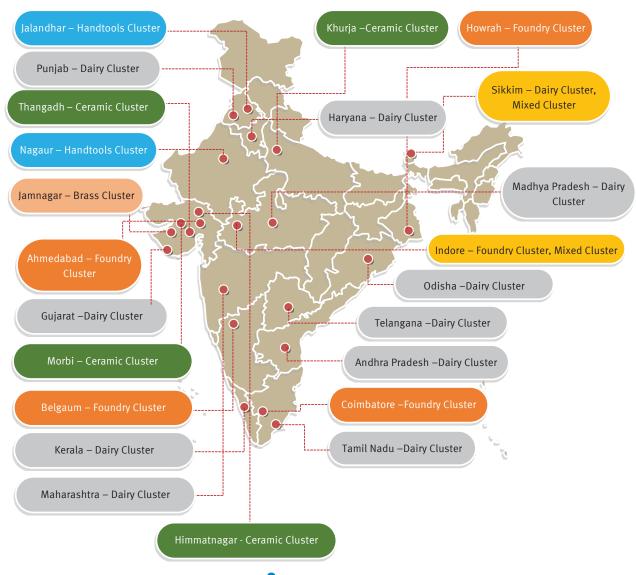
w Material Dosage Body Preparati

MSM	Million Square Metre
MSME	Micro, Small and Medium Enterprises
NG	Natural Gas
0&M	Operation and Maintenance
OEM	Original Equipment Manufacturer
PCU	Power Conditioning Unit
PF	Power Factor
PID	Proportional Integral Derivative
PLC	Programmable Logic Controller
PMU	Project Management Unit
PNG	Piped Natural Gas
PV	Photovoltaic
RE	Renewable Energy
RTPFC	Real Time Power Factor Correction
SEC	Specific Energy Consumption
SME	Small and Medium Enterprise
SPV	Solar Photo Voltaic
TOE	Tonne of Oil Equivalent
TDS	Total Dissolved Solids
UNIDO	United Nations Industrial Development Organisation
UOM	Unit of Measurement
VFD	Variable Frequency Drive
WHR	Waste Heat Recovery

Unit of Measurement

CFM	Cubic Feet per Minute			
°C	Degree Celsius			
GJ	Giga Joule			
hp	Horsepower			
INR	Indian Rupee			
kg	Kilogram			
kg/cm²	Kilogram Force per Square Centimetre			
kCal	Kilocalorie			
km	Kilometre			
kVA	kilo-volt-ampere (apparent power)			
kVAr	kilovolt-ampere-reactive (reactive power)			
kJ	Kilo Joule			
kW	Kilo Watt			
kWh	Kilo Watt Hour			
kWp	Kilo Watt Peak			
LPM	Litre per minute			
m	Metre			
m²	Square metre			
MJ	Mega Joule			
MT	Metric Tonne			
mmWc	Millimetres water column			
m³/hr	Cubic metre per hour			
m³/min	Cubic metre per minute			
m/s	Metre per second			
ppm	Parts per million			
SCM	Standard Cubic Metre			
TCO ₂	Tonne of Carbon dioxide			
TOE	Tonne of Oil Equivalent			
TPD	Tonne Per Day			

This Page Intentionally Left Blank


About Project & Technology Compendium

About the Project

The United Nations Industrial Development Organization (UNIDO), in collaboration with the Bureau of Energy Efficiency (BEE), a statutory body under the Ministry of Power, Government of India, is executing a Global Environment Facility (GEF) funded national project titled 'Promoting energy efficiency and renewable energy in selected MSME clusters in India'. The project was operational in 12 MSME clusters across India in five sectors, respectively: Brass (Jamnagar); Ceramics (Khurja, Thangadh and Morbi); Dairy (Gujarat, Sikkim and Kerala); Foundry (Belgaum, Coimbatore and Indore); Hand Tools (Jalandhar and Nagaur). The Project has now scaled-up and expanded its activities to 11 new clusters, namely in Dairy (Tamil Nadu, Odisha, Madhya Pradesh, Andhra Pradesh & Telangana, Haryana, Maharashtra & Punjab), Foundry (Ahmedabad & Howrah), Ceramic (Himmatnagar) Mixed Cluster (Indore & Sikkim) in order to reach out to MSME's at national level.

This project so far has supported 303 MSME units in implementing 603 Energy conservation Measures and thus resulted in reduction of about 10,850 TOE energy consumption and avoided 62,868 metric tons of CO2 emissions as on date.

aw Material Dosage Body

ration

โile Pressing

Drying

Glazing

Printing

The key components of the project include:

- Increasing capacity of suppliers of EE/RE product suppliers / service providers / finance providers
- ❖ Increasing the level of end user demand and implementation of EE and RE technologies and practices by MSMEs.
- Scaling up of the project to more clusters across India.
- Strengthening policy, institutional and decision-making frameworks.
- Significant progress has been made in the project and it is now proposed to scale up and expand. The activities envisaged under the scaling up phase of the project include:
 - → Establishment of field level Project Management Cell (PMC)
 - ♦ Organizing cluster level awareness program and identification of potential MSME enterprises
 - ♦ Development of cluster specific EE and RE based technology compendiums
 - Providing implementation support and other related activities to the identified enterprises

About the Technology Compendium

Ceramic industry in India is about 100 years old. It comprises ceramic tiles, sanitaryware and crockery items. Ceramic products are manufactured both in the large and small-scale sector with wide variation in type, size, quality and standard. Though there are a number of large companies in the ceramics sector, small and medium enterprises (SMEs) account for more than 50% of the total market in India.

The SMEs players in ceramic sector today face challenges and opportunities resulting from rising energy cost, environmental concerns and competitiveness. The increase in the price of raw materials and fuel increases the total cost of production which in turn, hampers the profit margin of the manufacturers. The energy cost accounts for 30 to 40% of total production cost. Adopting energy efficient equipment, systems, measures and best practices could offer substantial cost savings and improvement in profit margins.

This technology compendium is prepared with the objective to accelerate the adoption of energy efficient technologies and best practices in ceramic units in Himatnagar & Naroda ceramic cluster. It focuses on equipment upgrades, new technologies and best practices for improving energy efficiency. The case studies included in the compendium provide all the necessary information to enable ceramic units to refer and implement them in their operations. The case studies are supported with technology background, baseline scenario, merits, challenges, technical feasibility, financial feasibility and technology provider details. The energy efficiency measures included in the report cover more than 90% of energy consumption in a ceramic unit.

The thermal energy accounts for 80 to 90% of the total energy consumption. Roller kiln in tiles manufacturing units and tunnel kiln in pottery ware / crockery manufacturing units are the major source of fuel consumption. The electricity is mainly used for raw material preparation (ball mills drive, slurry transfer pumps, spray dryer fans, etc.), blowers in kiln, pumps and compressors. Over the years, there has been significant technological improvement in the process and utilities area and the ceramic units in Himatnagar & Naroda have been able to improve the energy efficiency in their operations. However, various opportunities exist for improvement in the energy efficiency. To be competitive and have environment friendly operations, energy efficiency is critical.

- The objective of this compendium is to act as a catalyst to facilitate ceramic units towards continuously improving the energy performance, thereby achieving world class levels (with thrust on energy & environmental management).
- ❖ The compendium includes general energy efficiency options as well as specific case studies on applicable technology upgradation projects which can result in significant energy efficiency improvements.
- The suggested best practices may be considered for implementation only after detailed evaluation and fine-tuning the requirements of existing units.
- ❖ In the wide spectrum of technologies and equipment applicable for tiles and crockery

Body Preparation Tile Pressing Drying Glazing Printing Firing Final Out

manufacturing units for energy efficiency, it is difficult to include all the energy conservation aspects in this manual. However, an attempt has been made to include the more common implementable technologies across all the ceramic units.

- ❖ The user of the compendium has to fine tune the energy efficiency measures suggested in the compendium to their specific unit requirements to achieve maximum benefits.
- The technologies collated in the compendium may not necessarily be the ultimate solution as energy efficiency through technology upgradation is continuous process and will eventually move towards better efficiency with advancement in technology.
- ❖ The ceramic industry in Himatnagar & Naroda should view this manual positively and utilize this opportunity to implement the best operating practices and energy saving ideas during design and operations stages and thus work towards achieving world class energy efficiency.

This Page Intentionally Left Blank

Executive Summary

Executive Summary

The United Nations Industrial Development Organization (UNIDO), in collaboration with the Bureau of Energy Efficiency (BEE), a statutory body under the Ministry of Power, Government of India, is executing a Global Environment Facility (GEF) funded national project called 'Promoting energy efficiency and renewable energy in selected MSME clusters in India'. The project execution is planned in multiple phases. The aim of the Phase-I of the project was to develop and promote a market environment for introducing energy efficiency and enhanced use of renewable energy technologies in process applications in the selected (12) energyintensive MSME clusters in India, with feasibility for expansion to more clusters. Phase-II of the project is to scale up and expand the project activities to a greater number of enterprises in existing clusters, as well as 11 new clusters, for better implementation of energy efficiency technologies and practices.

Efficient use of energy in any facility is invariably the most important strategic area for manageability of cost or potential cost savings. Awareness of the personnel, especially operators in the facility becomes a significant factor for the proper implementation of energy conservation initiatives. With this context, this Technology Compendium has been prepared, which comprises of various technologies and best practices to save energy.

The information in this compendium is intended to help the ceramic units in Ahmedabad ceramic cluster (Himatnagar & Naroda) to reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further analysis on the economics of all measures, as well as on their applicability to different production practices, is needed to assess their cost effectiveness at individual ceramic units. Further, this shall also serve as a guide for estimating the feasibility of energy saving projects at the first place and ensure accelerated implementation.

Chapter 1 of the compendium provides an overview of Indian Ceramic Industry and Ahmedabad (Himatnagar & Naroda) ceramic cluster.

Chapter 2 focuses on a brief overview of the tiles & crockery manufacturing process and energy consumption in ceramic units and includes technology status/mapping of the Ahmedabad ceramic cluster.

Chapter 3 focuses on importance of energy efficiency in ceramic industry and some of the common measures applicable in different sections of the ceramic unit. The energy efficiency measures are included for more than 90% of energy consumption areas in a tile and crockery manufacturing units, such as raw material preparation, mould formation, slurry transfer, kiln, utilities and utilization of renewable energy. The chapter also includes some of the best practices and key indicators that the unit should follow and monitor to maintain the energy efficiency levels in different energy consuming areas.

Chapter 4 provides detailed case studies for some of the high impact and implementable energy efficient technologies in tiles and pottery ware manufacturing units. In this chapter, 17 case studies for pottery ware manufacturing and 27 case studies for tile manufacturing have been included in areas such as raw material preparation, slurry transfer, mould preparation,

kilns, utilities, renewable energy, etc. These technologies are described in detail, such as baseline scenario, proposed scenario, merits, demerits, etc. and wherever possible, a case reference from a ceramic unit that has implemented the technology has been included. In most of the examples, typical energy saving data, GHG emission reduction, investments, payback period, etc., have been highlighted. Energy saving potential in this sector is estimated to be about 10-15%. High potential for improving energy efficiency in tiles and pottery ware units exists in the kilns via high velocity kiln burner, excess air control system in kiln, reduction in radiation losses, low thermal mass kiln cars, blunger in place of ball mill, high alumina balls in ball mills, installation of energy efficient pumps, fans, blowers, solar PV, etc.

The following table summarizes the list of technologies included in the compendium:

Table 1: List of technologies for tile manufacturing units

Sr. No.	Technologies	Investment (INR Lakh/TOE)	Payback (months)		
	Kiln				
1	Waste heat recovery in roller kiln	0.086	3		
2	Energy efficient coating to reduce the radiation losses in kiln and reduce fuel consumption	0.15	12		
3	Improvement of kiln insulation in roller kiln to reduce radiation losses	0.32	15		
4	Excess air control system to maintain optimum air-to- fuel ratio in kiln	0.48	20		
	Raw Material Blending				
5	Reduction in ball mill power by installation of VFD on ball mill drive	0.66	10		
6	High speed blunger in place of ball mill	1.40	23		
7	High alumina media in glaze ball mill in the place natural stone/pebbles	1.55	23		
8	Replacement of inefficient centrifugal fans with energy efficient fans in spray dryer	0.317	6		
	Utilities				
9	Installation of VFD in screw compressor to avoid unloading	0.63	11		
10	Installation of screw compressor with VFD in place of inefficient reciprocating compressor	1.86	29		
11	Energy conservation in compressor by modifying airline system	1.09	15		
12	Installation of energy efficient pumps	1.92	28		
13	Installation of energy efficient motors in place of old rewinded motors in ball mill	0.62	8		
14	Maximum demand controller for avoiding excess contract demand penalty		12		
15	Power factor correction & harmonic mitigation at main LT incomer		11		
16	Installation of VFD on agitator motor	0.61	9		

Sr. No.	Technologies	Investment (INR Lakh/TOE)	Payback (months)		
17	Installation of on-off controller system in agitator motor	0.13	2		
18	Installation of energy efficient motor in place of existing conventional motors in agitator				
Rene	wable Energy				
19	Solar rooftop system 2.68				
New & Innovative technologies					
20	Solar-Wind hybrid system	5.30	84		
21	CFD application in spray dryer for improving heat transfer	0.148	16		
22	Energy efficiency in ceramic kiln through utilization of HHO gas	0.77	28		
23	Installation of Energy Efficient burners in place existing old conventional burner in kiln firing 0.82		30		
24	Optimization of water consumption by installation of water softener unit	0.27	26		
25	Installation of Energy Management System	0.086	3		
26	Insulation improvement in Hot air generator for spray dryer	0.254	21		
27	Excess air control system to maintain optimum air to fuel ratio in Hot air generator (HAG)	0.0611	5		

Table 2: List of technologies for pottery ware units

Sr. No.	Technologies	Investment (INR Lakh/TOE)	Payback (months)		
	Kiln				
1	Waste heat recovery in tunnel kiln	0.35	13		
2	Energy efficient coating to reduce the radiation losses in kiln and reduce fuel consumption	0.39	14		
3	Low thermal mass for reduction of kiln furniture losses in pottery ware units	0.39	14		
4	Improvement of kiln insulation in kiln to reduce radiation losses	0.59	22		
5	Excess air control system to maintain optimum air-to- fuel ratio in Kiln	0.8	29		
	Raw Material Blending				
6	Reduction in ball mill power by installation of VFD on ball mill drive	0.85	13		
7	High speed blunger in place of ball mill	1.40	23		
8	High alumina media in glaze ball mill in the place natural stone/pebbles	1.55	23		
	Utilities				
9	Retrofit of energy efficient ceiling fans in place of conventional fans.	0.88	13		

Sr. No.	Technologies	Investment (INR Lakh/TOE)	Payback (months)	
10	Transvector nozzle in compressed air hose pipe for mould cleaning application	1.1	12	
11	Maximum demand controller for avoiding excess contract demand penalty		12	
12	Installation of on-off controller system in agitator motor	0.23	4	
13	Installation of energy efficient motor in place of existing conventional motors in agitator system	2.97	48	
Renewable Energy				
14	Solar rooftop system	2.90	43	
New & Innovative technologies				
15	Solar-Wind hybrid system	5.30	84	
16	Energy efficiency in ceramic kiln through utilization of HHO gas	1.98	71	
17	Installation of Energy Efficient burners in place existing old conventional burner in kiln firing	0.89	32	

This Page Intentionally Left Blank

Indian Ceramic Industry

1. Indian Ceramic Industry

1.1. Background

The Indian ceramic industry contributes considerably to India's economic progress. With growing urbanization and increasing use of ceramic tiles and sanitary ware in the Indian construction sector, the industry is expected to grow further at an increased rate. Indian ceramic industry is dominated by ceramic tiles industry. In 2017, India strengthened its position as the world's 2nd largest tile producer and consumer country, accounting for 7.97% (1,080 million sqm)¹ of the global production. Though there a number of large companies in the ceramics sector, small and medium enterprises (SMEs) account for more than 50% of the total market in India. Gujarat accounts for 70% of the total output.

Table 3: Top 5 Ceramic tile manufacturing countries of the world (in MSM)

Country	2015	2016	2017	% of world production in 2017
China	5,970	6,495	6,400	47.23
India	850	955	1,080	7.97
Brazil	899	792	790	5.83
Vietnam	440	485	560	4.13
Spain	440	492	530	3.91
Total world	12,460	13,255	13,552	100

MSM: Million Square Metre

Morbi, a small industrial town near Rajkot, is the second largest tiles manufacturing cluster in the world accounting for 90% of total production of ceramic products in India. Himatnagar, a town near Ahmedabad, also houses some major tile manufacturing units.

With an installed capacity of more than 40 million pieces/year, India is the world's second largest sanitaryware producer after China. The rapid growth in sanitaryware production has been concentrated in Morbi & Thangadh in Gujarat.

Khurja, a small town in Uttar Pradesh and Naroda in Ahmedabad, manufacture pottery wares.

The share of ceramic products in India is shown below:

¹ Ceramic world review

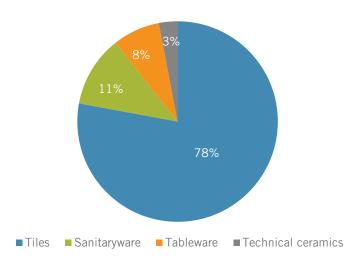


Figure 1: Ceramic product market share (2017)

The SME ceramic industry has developed in clusters in Morbi, Thangadh and Ahmedabad in Gujarat and in Khurja in Uttar Pradesh. Morbi cluster produces mostly tiles and sanitaryware products, Thangadh cluster produces sanitaryware, produces Khurja cluster crockery and electrical insulators. Naroda in Ahmedabad produces crockery items and Himatnagar in Ahmedabad produces mostly tiles and crockery items. The table below lists the clusters, no. of ceramic units in each cluster and their major products.

Table 4: Cluster level details

Location	Products	No. of units (approx.)
Morbi	Ceramic tiles (major product), Pottery ware, technical & industrial ceramics	700
Thangadh	Pottery ware (major product), Refractories	160
Himatnagar	Wall & floor tiles	21
Naroda	Crockery	23
Khurja	Crockery, electrical insulators	220

In tiles category, the main product segments are the Wall tile, Floor tile, Vitrified tile and Industrial tile segments. The market shares⁴ (in value terms) are 20%, 23% 50% and 7% respectively for Wall, Floor, Vitrified and Industrial tiles.

Indian sanitary basic segment is dominated by unorganized players whereas the standard, premium and luxury segment is dominated by organized players.

Pottery ware signifying crockery and tableware category is largely unorganized.

Ceramics industry is a highly energy intensive industry. After raw materials, electricity and fuel cost is the second largest cost element in the total cost of production. The energy cost accounts for 30 to 40% of the total production cost. According to the estimates, 10 to 15% energy saving is possible in the ceramic units by adoption of latest energy efficient technology, processes, best practices, etc.

⁴ Indian Council of Ceramic Tiles and Sanitaryware (ICCTAS) report

1.2. Ceramic Sector Growth Prospects

The key drivers for the ceramic product in India are the boom in housing sector coupled with government policies fueling strong growth in housing sector. Government focus on infrastructure development is to result in driving demand for Indian ceramics, sanitary ware and bathroom fittings industry. Indian government spending on construction and real estate, including affordable housing is set to boost demand for ceramic products in the country. With many new projects lined up in the country, the construction sector is growing at an approximate rate of 7 to 8 per cent. The demand for industrial ceramic products such as ceramic tiles, sanitary wares and pipes required in construction applications too is expected to increase.

Indian ceramic industry is dominated by ceramic tiles industry, with a market of 4.9 billion EUR in 2017. Overall ceramic industry is expected to grow at 9% CAGR to become 7.5 billion EUR by 2022⁵. Indian sanitary ware market is to be 560 million EUR in 2017; basic segment is dominated by unorganized players whereas standard, premium and luxury segment is by organized players. Pottery products are sold all over India and also exported. Within India, products are sold directly and also indirectly through middlemen, shopkeepers etc. The major export items are ceramic artware, insulators and scientific porcelain.

Ceramic product manufacturers face challenges due to the rise in the cost of production, which, in turn, hampers the profit margin of the manufacturers. The increase in the price of raw materials such as zirconium and titanium and fuel such as compressed natural gas (CNG) which constitutes 30% of the input cost for manufacturing ceramic products, increases the total cost of production.

The growth in tile industry was mainly driven by the transformation of ceramic tiles from being typically hygiene products into adornment and aesthetic solutions for every household. The potential is huge considering the per capita consumption of ceramic tiles in India. Currently it is at 0.50 square meters per person⁶ in comparison to over 2 square meters per person for like countries like China, Brazil and Malaysia.

Crockery has by far become an integral part of every dining room not only because of its utility but also because it can lend grandeur even to a humble little dwelling. The demand for crockery in India has undergone dramatic change. Crockery is no longer used only as a serve ware but as a lifestyle product. With cultural diversity and varied lifestyles in India, crockery market is one of the most vibrant market segments. A highly fragmented market, crockery has been one of the fastest growing segments over the past few years.

⁶ Indian Council of Ceramic Tiles and Sanitaryware (ICCTAS)

⁵ Status Quo and Outlook 2022: Indian Ceramics Industry, Market study by EAC International Consulting on behalf of Messe Muenchen India, March 2018

1.3. Ahmedabad Ceramic Cluster

Ceramic units in Ahmedabad cluster are located at Himatnagar & Naroda.

Himatnagar ceramic cluster:

Himatnagar is a municipality in Sabarkantha district in the state of Gujarat. It is 68 km from the state capital Gandhinagar towards South and about 90 km from Ahmedabad. Himatnagar cluster houses around 21 ceramic units which includes 15 tile manufacturing units and the rest are crockery, insulator and refractory manufacturing units. The industrial area produces Wall tiles, Floor tiles, Vitrified tiles and Glazed Vitrified Tiles. The tile manufacturing units in Himatnagar mostly uses latest technologies and equipment imported from all over the world.

Clay, the most important material required for manufacturing ceramic tiles, is generally obtained from Rajasthan in India and other parts of Gujarat.

The ceramic tile units in Himatnagar uses PNG for the fuel requirements in roller kilns and coal for the spray dryer. Other electrical energy consuming equipment in tiles manufacturing units are ball mills, spray dryer, press machine, pumps and compressors etc.

Sabarkantha District Ceramic Association is a group of ceramic tile manufacturing units based at Himatnagar that provides support to the ceramic units for improving the product quality and energy efficiency.

Naroda ceramic cluster:

Naroda is an industrial area, northeast of central Ahmedabad in Gujarat. It is 8 km from Ahmedabad international airport. Naroda ceramic cluster houses around 23 ceramic units manufacturing crockery and tableware. The manufacturing units in Naroda use old technologies and equipment.

Clay, the most important material required for manufacturing crockery, is generally obtained locally.

The crockery manufacturing units in Naroda use PNG for the fuel requirements in tunnel kiln. Other electrical energy consuming equipment in the units are ball mills & pumps.

Ahmedabad Pottery Manufacturers' Association is a group of crockery manufacturing units based at Naroda that provides support to the ceramic units for improving the product quality and energy efficiency.

Central Glass & Ceramic Research Institute (CGCRI), Naroda Centre, Ahmedabad cater to the needs of the Ceramic Industries in the small and medium scale sectors in Gujarat and adjoining areas with the following main objectives:

- Evaluation and utilization of locally available ceramic raw materials.
- Offering testing facilities to ceramic and allied industries.

- - Developing of traditional white ware ceramics.
 - Undertaking sponsored research and transfer of technology.
 - Technical assistance to the ceramic industries in improving quality, productivity, cost reduction, import substitution and export promotion.
 - Training of personnel for manpower development in the ceramic industry.
 - Rendering consultancy services to the industry.
 - Improvement in rural pottery & development of technologies for diversification in the product range.

Manufacturing Process and Energy Consumption

2. Manufacturing Process and Energy Consumption

2.1. Ceramic Product Value Chain

The following figure indicates the value chain of ceramic manufacturing industry, from raw materials to final products.

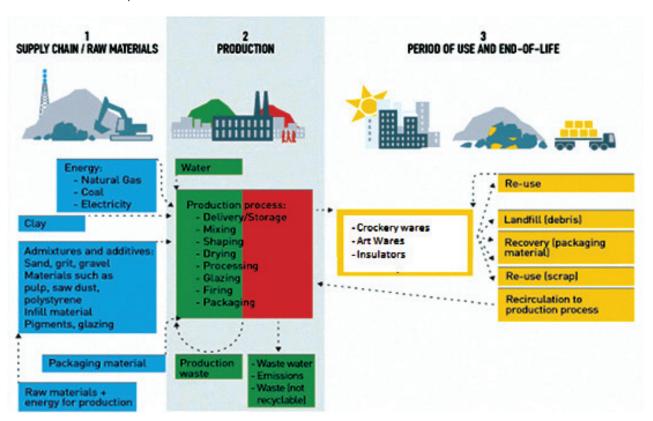


Figure 2: Ceramic product value chain

The major operations in ceramic manufacturing process are described below:

i) Raw Materials: This includes the raw materials and energy used for production.

a. Raw material for production:

Most of the units in Himatnagar & Naroda cluster procure raw material available locally and from other parts of Gujarat and Rajasthan. In addition to these, there are other raw materials and chemicals that are used in the glazes such as Zinc oxide, Zirconia, Barium Carbonate, Chromium Oxide, Soda and Feldspar, which are procured from traders in Morbi.

b. Energy for production:

Ceramic manufacturing units use both electrical energy and thermal energy for production. Electrical energy constitutes 15-20% of the overall consumption. Main areas of usage are in kiln, ball mills, spray dryer & press machine (in tiles units), pump and compressor. Major amount of thermal energy is used as natural gas in kiln firing and drying. Tile manufacturing units use coal in spray dryer.

taw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outpu

ii) Production Process:

Ceramic tile production process involves the blending, spray drying, pressing, drying, firing, quality inspection and dispatch, while crockery production process involves the blending, mould preparation, drying (cast house), glazing, firing, quality inspection and dispatch. Detailed process is explained in section 2.2.

iii) Final Products usage:

The products are used in building, infrastructures and other construction sectors, household items, etc.

2.2. Process Flow for Tile and Pottery Ware Manufacturing

The units in Himatnagar manufacture mostly tile and units in Naroda manufacture pottery ware products. There are approximately 21 ceramic units in Himatnagar. Out of this, 70% units manufacture tiles and the rest manufacture crockery, insulator and other products. Naroda cluster have 23 ceramic units engaged in manufacturing crockery products.

2.2.1. Ceramic Tile Manufacturing Process:

The various types of tiles manufactured mostly have a common process of production, which is shown below.

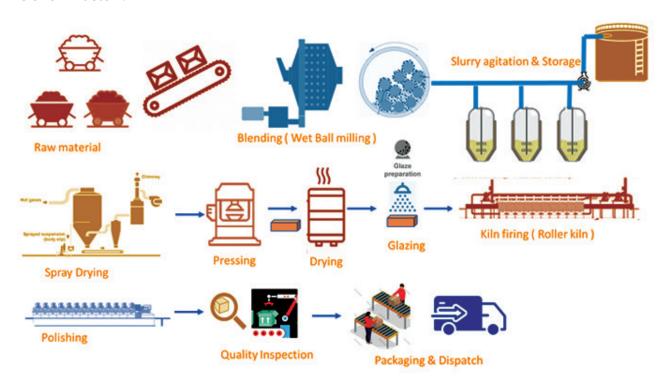


Figure 3: Ceramic tile manufacturing process flow

Raw material blending:

Ball mills or blungers are used for grinding. Raw materials such as China clay, Bole clay, Than clay, Talc, Potash, Feldspar and Quartz are mixed with water in proper proportion and grinded in a ball mill to form a homogenous mixture, i.e. slurry. Ball mills have pebbles and inner lining, depending on raw material quality and quantity, the blending time varies; hence ball mills are operated in batch process.

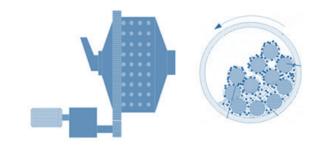


Figure 4: Raw material blending (wet ball milling)

w Material Dosage Body Preparation Tile Pressing Drying Glazing

Figure 5: Slip agitation and storage

Slurry agitation and transfer system:

After completion of wet grinding in ball mills, slurry is stored in the underground tanks fitted with agitator motor in each tank, for continuously mixing to maintain uniformity and avoid settling of solid particle. Slurry is then pumped to spray dryer through a hydraulic pump.

Spray drying: Slurry transferred from storage tanks is sprayed into spray dryer through nozzles. Water, which is added in the grinding process in the ball mill is removed in spray dryers. Hot flue gases 550-600°C from heat source fired from lignite, Indonesian coal and biomass absorbs the moisture from input slurry (35-40%) to output slurry with 5-7% moisture.

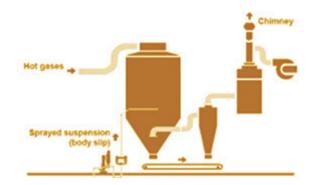


Figure 6: Spray drying process

Figure 7: Pressing machine

Pressing machine:

The product from the spray dryer is then sent to the hydraulic press where the required sizes of biscuit tiles are formed and sent to dryer through conveyer.

Drying: After press, biscuits containing about 5% to 6% moisture are sent to drier and dried to about 2% to 3% moisture level in case of vitrified tiles. In case of wall and floor tiles, biscuits are directly baked to a temperature of about 1,100 to 1,150°C and after glazing, they are baked again. In some ceramic units, hot air from kiln cooling zone exhaust is used in dryers, which saves energy consumption in driers.

Figure 8: Tiles drying

Glazing: Glaze is separately prepared from glaze ball mill by grinding the following components: Silica, Alkalis, Lead, Boron, Zirconium, Iron, Chromium, Cobalt stored in storage tanks. The biscuits dried from the dryer enter glazing section where glazing is sprayed on the tiles. After glazing, tiles are sent for designing & firing.

Figure 9: Glazing

Kiln Firing:

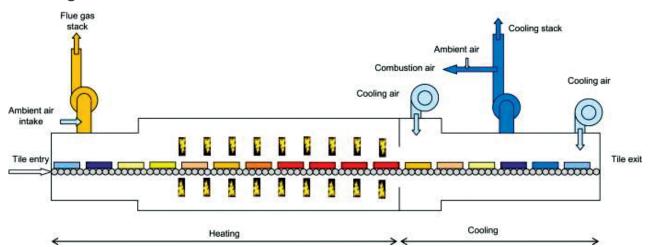


Figure 10: Tunnel Kiln firing

After glazing the biscuit tiles are sent to designing for printing the designs. After completion of designing, the tiles are sent to roller kiln for firing. The fusion of material in ceramic tiles and glaze are transformed into glassy phase through vitrification in kiln firing zone at temperature

w Material Dosage Body Preparation

1,000°C to 1,400°C. After the vitrification process, the ceramic tiles to have high strength, resistance to heat and fire and chemical inertness.

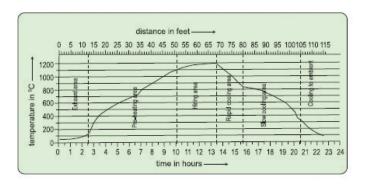


Figure 11: Firing cycle

The kiln firing is done in two stages:

- 1) Preheating zone (500 750°C)
- 2) Firing zone (1,000 1,400°C).

After firing, tiles are cooled in two zones:

- 1) Rapid cooling zone (600 900°C)
- 2) Cooling zone (200 500°C)

2.2.2. Ceramic Pottery Ware Manufacturing Process

The various types of crockery, art ware and electrical goods manufactured have largely a common process of production, which is shown below. There are three broad steps in manufacturing pottery product: preparation of the raw materials, preparation of the greenware and firing.

- Clay is ground and mixed in a mixer. The clay is then mixed with water and made workable.
- Clay is poured into moulds, extra material is cleaned or trimmed. Additional parts such as handles added if required.
- The greenware is loaded onto trays and then placed in kilns. Terracotta and earthenware are fired immediately whilst porcelain and some other products are first glazed and then fired.

The general manufacturing process of ceramic products is described below.

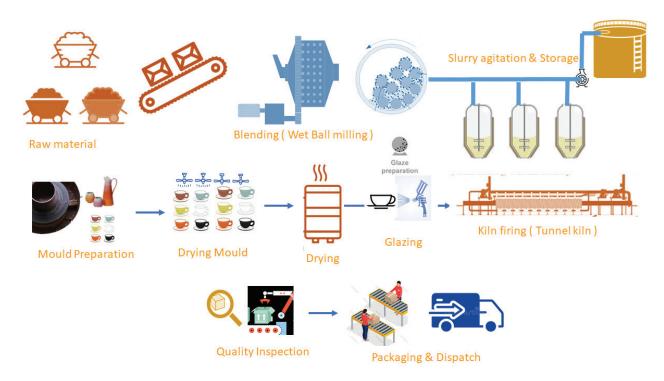


Figure 12: Ceramic pottery manufacturing process flow

Raw material blending:

Ball mills or blungers are used for grinding. Raw materials such as China clay, Plastic ball clay, Potash, Feldspar and Quartz are mixed with water in proper proportions and grinded in a ball mill to form a homogenous mixture, i.e., slurry. Ball mills have pebbles and inner lining; depending on raw material quality and quantity, the blending time varies; hence, ball mills are operated in batch process.

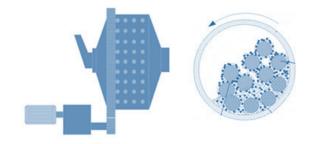


Figure 13: Raw material blending (wet ball milling)

Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Output

Slurry agitation and transfer system:

After completion of wet grinding in ball mills, the slurry is stored in the underground tanks fitted with agitator motor in each tank, for continuous mixing to maintain uniformity and avoid settling of solid particle. Slurry is then pumped to mould through a slurry transfer pump.

Figure 14: Slip agitation and storage

Mould preparation: Most of the ceramic products are shaped using dies. Mould is used in slip casting during forming process for pottery-wares. Moulds are either made of Plaster of Paris (POP) or polymers. Pre-shaped pattern is used to prepare green moulds. Once the mould is prepared, it is dried to remove the excess water from the mould. This stage is crucial to increase the life of the mould. Later it is strengthened through controlled heating and drying in kiln.

Figure 16: Cast house

Figure 15: Mould preparation

Body material preparation:

The slip is passed through filter press to get rid of soluble salts and excess water to make a plastic body mix. Based on requirements, the moisture content of the body-mix is reduced before pugging or directly fed into a pan or pug mill for de-aeration. The deaerated body mass is transferred to casting areas.

Casting: The slip is poured into the mould and allowed to form the casting layer on the mould. Casting is removed from the mould. This casts are allowed to dry in atmospheric temperature for few hours to one day in natural drying using the ceiling fans.

Glazing:

Glaze is separately prepared from Glaze ball mill by grinding the following components Silica, Alkali, Lead, Boron, Zirconium, Iron, Chromium and Cobalt stored in storage tanks. The pottery is dried from the casting section and enters the glazing section; the cast is then dipped in glaze. After glazing, sprayed ware is loaded in kiln car for firing.

Figure 17: Glazing

Kiln Firing:

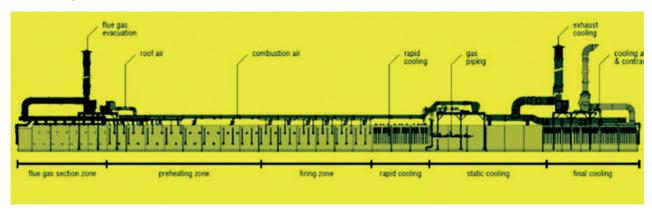


Figure 18: Tunnel kiln firing

After glazing, dust and other impurities are removed from the ware through blowing air, then the kiln car with wares is sent to tunnel kiln for firing. In preheating zone, mechanically and chemically combined water has been removed from the ware. At firing zone, at $1,100 - 1,250^{\circ}$ C, all the raw materials are fused together and glaze is fused evenly. In the cooling zone, sudden cooling is done to create a glossy surface. After firing, the wares are sent to quality inspection.

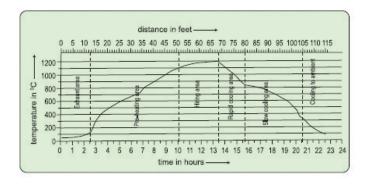


Figure 19: Firing cycle

The kiln firing is done in two stages:

- 1) Preheating zone (500 750°C)
- 2) Firing zone (1,100 1,250°C).

After firing, cast are cooled in two zones:

- 1) Rapid cooling zone (600 900°C)
- 2) Cooling zone (200 500°C)

Quality Inspection: In this stage of the process, all wares from the kiln are inspected and sorted according to the defects. If ware is defect-free, it will be sent to the packing section for packing.

Packing: It is the final stage of the pottery ware manufacturing/production process. All pottery ware that pass quality standards are packed and dispatched to the warehouse.

Body Preparation Tile Pressing Drying Glazing Printing

2.3. Energy Consumption in Tiles & Pottery Ware Manufacturing Units

The tiles and pottery ware industry use energy in the form of thermal for kiln firing, spray drying and electricity for process and utilities. The cost of energy sources used in the industry is increasing continuously, which in turn increases the processing expenses and therefore, the product cost. Energy costs typically constitute 30-40% of the overall manufacturing cost. Following table provides an overview of major energy consuming areas within a tile & pottery ware manufacturing unit:

Table 5: Energy consumption overview for tile manufacturing unit

S No.	Equipment	Process Requirement	Primary Energy
1	Ball mill	Grinding	Electricity
2	Pumps	Slurry transfer	Electricity
3	Spray dryer	For drying slurry	Coal
4	Compressed air, blower and utilities	Process	Electricity
5	Ball mill and compressed air	Glaze preparation	Electricity
6	Roller kiln	Firing	NG
7	Vertical/horizontal dryer	Drying	NG
8	Hydraulic press machine	Press shop	Electricity

Table 6: Energy consumption overview for pottery ware manufacturing unit

S No.	Equipment	Process Requirement	Primary Energy
1	Ball mill	Grinding	Electricity
2	Pumps	Slurry transfer	Electricity
3	Ceiling fans and compressed air	Casting	Electricity
4	Ball mill and Compressed air	Glaze preparation	Electricity
5	Tunnel kiln	Firing	NG

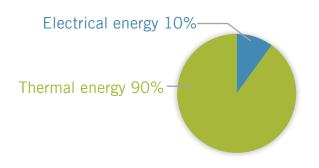


Figure 20: Energy cost breakup

Energy consumption of tiles and pottery ware unit depends on capacity of roller and tunnel kilns, spray dryer and the level of automation in kiln and ball mills. The industry uses energy in the form of fuel for kiln firing and electricity for process and utilities.

The share of primary energy (thermal and electrical) in a typical manufacturing unit is primarily dominated by thermal energy.

taw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outpu

49

The major portion of energy consumption in a typical tile manufacturing unit is in the use of natural gas for firing in roller kiln, dryer and coal in spray dryer, whereas in a typical pottery ware manufacturing unit, it is in the use of natural gas for firing in tunnel kiln. A certain portion of energy consumption goes to the blending and other utilities.

The figure below highlights the overall energy balance of a ceramic unit.

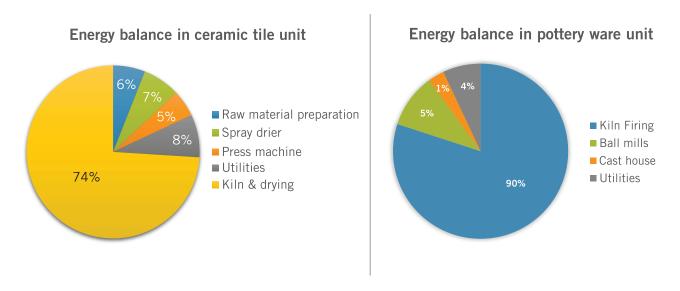


Figure 21: Energy balance in ceramic tile and pottery ware unit

Ceramic tiles manufacturing units in Himatnagar have seen significant improvement in energy and productivity in the past few years due to technological development and increased levels of automation. This has helped in improving product quality and operating conditions while reducing product losses, maintenance time, manpower requirement and energy consumption. Further opportunities for energy saving are in optimization of ball mill operation using PLC and VFD, installation of energy efficient compressors, pumps and fans, ceramic coating and insulation in kiln.

2.4. Technology Status in Ahmedabad (Himatnagar & **Naroda) Ceramic Sector**

Most of the units in Himatnagar have expanded over time with upgradation of equipment and technologies, expansion and automation and process control. A few of the units have also adopted latest technologies in kiln firing and other important areas.

Some pottery manufacturing units in Naroda have also adopted latest technologies and upgraded the equipment for productivity improvement and energy saving.

Following is the technology status for the units in Ahmedabad ceramic sector:

Table 7: Technology Status – Ahmedabad Ceramic Sector

Sr. No	Area	Current Status
		Thermal energy accounts for 80 to 90% of total energy use in ceramic units.
1	Energy Sources	Electrical Energy – The units procure electricity from distribution companies in Gujarat (depending on region) and pay in the range of INR 7–8/kWh.
		Thermal energy is mostly met through natural gas. In ceramic tile manufacturing unit, natural gas is used in kiln firing and dryers & Coal is fired in spray dryer whereas in pottery ware manufacturing unit natural gas is used for tunnel kiln firing. In Himatnagar & Naroda, the natural gas is available through City/Industrial Gas Distribution Network.
		The ceramic tile manufacturing unit in Himatnagar uses roller kiln for continuous firing at 1,250°C. The pottery ware manufacturing units in Naroda use continuous firing techniques in tunnel kiln at 1,100–1,250°C.
2	Kiln Firing	Some of the units have upgraded kiln and have incorporated various energy conservation measures such as automation, energy efficient coating (in roller kiln), low thermal mass kiln cars (in tunnel kiln), etc.
		However, not all the units use waste heat recovery and energy efficient burners and this presents a good opportunity for upgradation from conventional burners.
	Blending	Units use ball mills to blend the raw material and prepare slurry. Many units have installed VFD on ball mill drive and some units have changed inner lining and grinding balls with alumina.
3		However, not many units have implemented blunger technology in place of ball mill and there is a lot of potential for energy saving by installing blungers in place of ball mill.
4	Slurry Transfer system	The slurry is transferred from slurry collection tank to casting house using the electro-mechanical driven pump. At present, the units are using local slurry pumps, leaving a potential for implementation of energy efficient slurry pumps.
5	Spray dryer	The spray dryer is installed in tile manufacturing units. The slurry transfer from tank to spray dryer through hydraulic pump and hot gases fired from the coal fired heat source at 650°C used to remove moisture from slurry and make it fine powder. The ceramic powder is then shaped into fine biscuit using hydraulic press machine in press shop.

Sr. No	Area	Current Status
6	Cast house (Pottery ware)	In pottery ware units, castings that are made from mould are dried under natural air through ceiling fans. The ceiling fans installed are conventional fans consuming 70 W power at full speed. Potential exists to replace with energy efficient fans which consumed 50% less power than conventional ceiling fans.
7	Others	The other equipment and technologies to support process are pumping, electrical distribution, compressed air systems and others.
7a	Pumps	The pumps are installed for water and slurry transfer. The efficiency of the pumps needs to be evaluated, as many pumps are old. There is a good scope for improvement by avoiding throttling (installation of VFD, trimming of impeller) or by installation of high efficiency pumps (more than 70% efficiency).
7b	Electrical Distribution	Some of the units have installed APFC for power factor improvement. However, there are certain opportunities which units can tap in electrical distribution, such as installation of energy efficient transformers, optimal loading of transformers, installation of energy efficient motors, installation of VFD, soft starters, auto star delta conversion, power quality, etc.
7c	Compressed Air	Compressed air is used for instrument air application, mould preparation (pottery ware) and glazing. The tile manufacturing units are using screw compressor and a few units have installed VFD to avoid unloading. However, there are certain opportunities which units can tap in compressed air distribution and utilization, such as aluminium piping for leakage reduction, transvector nozzle in cleaning applications, etc.

2.5. Benchmarking

Benchmarking is done to evaluate facility or unit's performance, viz., financial, production, energy etc. Benchmarking of energy use provides the means to compare a unit with other units or national and international best practices. Energy benchmarking is an effective tool for improving energy efficiency of an industrial unit. Energy benchmarking helps the units to understand the extent of difference in performance as compare to the best performing units, as well as the root cause for the differences.

The product wise specific energy consumption for various tile products is shown in below table:

Table 8: Product wise specific energy consumption for units

	Thermal energy (NG)		Electrical energy		Overall energy consumption
	MOU	Range	UOM	Range	MJ/unit production
Wall & floor tiles	SCM/m ²	1.28-1.8	kWh/m²	1.51-1.92	0.051-0.071
Vitrified tiles	SCM/m ²	1.51-2.11	kWh/m²	3.71-5.01	0.067-0.093

Below table provides information regarding energy consumption in ceramic manufacturing in India.

Table 9: Industry benchmark for Indian Ceramic Products

	иом	Industry benchmark
Ceramic Tiles	(Thermal)	
Spray Drying	kJ/kg	980-2,200
Drying	kJ/kg	250-750
Once fired roller kiln	kJ/kg	1,900-4,800
Twice fired roller kiln	kJ/kg	3,400-4,600
Ceramic Tiles	(Electrical)	
Pressing	kWh/kg	50-150
Drying	kWh/kg	10-40
Firing	kWh/kg	20-150

The specific energy consumption (SEC) – overall SEC and by energy source for tile products are shown in below tables:

	Theri	nal energy (NG)	Elec	trical ener	gy	Overall energy consumption range	Overall Average value
		MJ/m²			kWh/m²		MJ/m²	GJ/Tonne
Floor tiles	Min	Max	Avg	Min	Max	Avg		
1,001,011,00	77	177	127	3.12	3.32	3.22	89-188 (Avg 175)	7.3
		MJ/m²			kWh/m²		MJ/m²	GJ/Tonne
Wall tiles	Min	Max	Avg	Min	Max	Avg		
(full process)	102	274	178	1.4	2.9	2.0	128-285 (Avg 182)	32
		MJ/m²			kWh/m²		MJ/m²	GJ/Tonne
Wall tiles (partial	Min	Max	Avg	Min	Max	Avg		
process)	58	105	84	0.9	1.4	1.3	63-117 (Avg 77)	7.8
		MJ/m²			kWh/m²		MJ/m²	GJ/Tonne
Vitrified tiles	Min	Max	Avg	Min	Max	Avg		
	63	134	108	3	6	4	73-148 (Avg 127)	1,418

Table 10: Equipment wise specific energy consumption – Floor tile unit

Floor tile	Coal	NG	Electricity
	Kg/Tonne	SCM/Tonne	kWh/Tonne
Kiln	168-329	126	6.9-13.5
Hot Air Generator	91-125		6.2-12.1
Dryer	18	15-19	12.5-24.8
Ball Mill			10-13
Agitator			1.2-2.8
Spray Dryer			1.9-2.6
Press			10-69
Finishing			22.6-24.8

Table 11: Equipment wise specific energy consumption – Wall tile unit

Wall tile	Coal	NG	Electricity
	Kg/Tonne	SCM/Tonne	kWh/Tonne
Kiln (Single)	117	43	5.6-6.3
Biscuit Kiln	109-119	34-55	2.95-15
Glaze Kiln	108	33-48	4-6
Hot Air Generator	111-260		1.75-8.5
Dryer		28.5	4.85
Ball Mill			2-15
Agitator			0.5-2
Spray Dryer			1.9-6.6
Press			6-34
Glaze Mill			3.5-4.6
Finishing			2.3-10

Table 12: Equipment wise specific energy consumption – Vitrified tile unit

Vitrified tile	Coal	NG	Electricity
	Kg/Tonne	SCM/Tonne	kWh/Tonne
Kiln	134-234	55-58	10.5-43
Hot Air Generator		95-153	6-28
Dryer	5-115*	2-15*	2.5-10.4
Ball Mill			2.4-24
Agitator			6
Spray Dryer			1-4
Press			7-29
Glaze Mill			3-43
Finishing			13-187

^{*}included supplementary firing

This Page Intentionally Left Blank

Energy Efficiency Opportunities

3. Energy Efficiency Opportunities

3.1. Energy Efficiency in Ceramic Tile and Pottery Ware Units

The ceramic tile and pottery ware maufacturing operations are highly energy intensive. The kiln firing and raw material blending are important and energy consuming areas for any manufacturing unit and improving energy efficiency in these areas is critical.

Over the years, there has been significant technology improvement in process and utilities area and units have been able to improve the energy efficiency in their operations. However, various opportunities exist for units to improve their energy efficiency and to be competitive and have environment-friendly operations; energy efficiency is critical to achieve these goals.

The manufacturing units have been implementing various energy conservation measures across various production process. The energy efficiency at a unit can be viewed at two levels – equipment & component level and process level. The energy efficiency at equipment or component level can be achieved by adopting various new technologies, preventive maintenance, optimum utilization or replacement of old equipment with new and energy efficiency equipment. In addition to improving energy efficiency at equipment or component level, the Ahmedabad Ceramic sector has made significant improvements in process level efficiency through various energy conservation measures such as automation, process control & optimization, process integration or implementation of new and efficient process.

Often, energy efficiency measures when implemented at the ceramic tile/pottery ware manufacturing operations, not only result in improvement in energy efficiency but also in productivity and quality improvement as well. To summarize, the energy efficiency strategy can be focused at three levels:

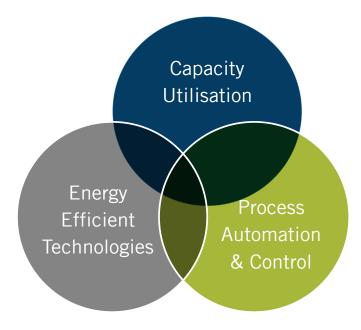


Figure 22: Energy Efficiency Approach – Ahmedabad ceramic cluster

w Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outp

3.2. Energy Efficiency Measures

There are various energy consuming areas within a tile and pottery ware manufacturing unit. Thermal energy is used for kiln firing and electrical energy for raw material blending in ball mill, utilities and other processes of the unit. Following figure provides an overview of energy usage in a ceramic tile and pottery ware unit.

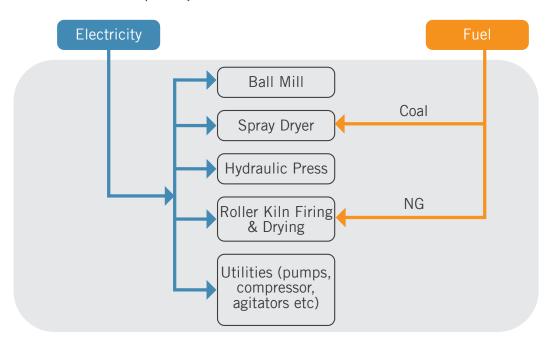


Figure 23: Ceramic tile manufacturing unit – Energy usage area

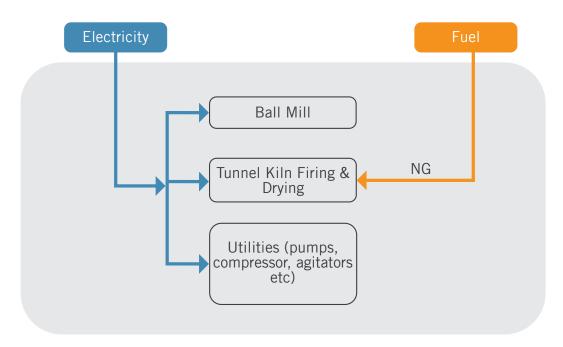


Figure 24: Pottery ware manufacturing unit – Energy usage area

The following section provides an overview of some of the key energy efficiency measures in the major energy consuming areas in a ceramic unit and in further sections, some of the latest applicable technologies are covered.

taw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Output

3.2.1. Energy Efficiency in Tunnel Kiln

Kiln firing is energy intensive and an important process as raw biscuit in ceramic tile and raw casting in pottery ware units are required to be fired at 1,250°C for fusion of raw materials. The energy efficiency in kiln is an important area as it accounts for approximately 80-85% of the total energy cost. Following are some of the key energy conservation measures in kiln firing and insulation system:

Table 13: Energy efficiency measures in kiln

Energ	y efficiency in kiln		
	Firing		
Use of energy efficient burner	Recuperation (use of heat hot air from cooling zone as combustion air)		
Excess air control system	Kiln automation & control		
Maintaining adequate kiln temperature	Maintaining adequate kiln draft		
Heat	losses reduction		
Improved insulation	Low thermal mass in kiln car		
Proper kiln maintenance	Waste heat recovery from exhaust flue gas		
Energy efficient coating for reduction of radiation loss from kiln	Energy efficient combustion and rapid cooling blowers		
VFD on kiln combustion blowers			
Management systems			
Effective monitoring of key parameters (fuel consumption, production, energy etc.)	Root cause analysis		

3.2.2. Energy Efficiency in Raw Material Preparation Process

Ceramic tiles and pottery ware manufacturing involves blending of raw materials to form slurry, slurry storage and transfer system, coating house for shaping and glazing section. Some of the possible energy efficiency measures are highlighted in the table below.

Table 14: Energy efficiency in raw material preparation process

Energy efficiency in blending systems (ball mills)					
Blending (ball mills)					
Maintaining the adequate media size and composition	Operating the ball mill at 65% - 75% of critical speed				
Alumina lining inside the mill	High alumina grinding balls				
Automation & control of ball mills through timer and PLC	Installation of VFD on ball mill motors				
Energy efficient ball mill motor drive	V -belt to flat cogged belt				
Slurry agitati	Slurry agitation and transfer system				
Use of energy efficient agitators	Energy efficient motors installation for agitation				
Delta to star conversion of lightly loaded motors in agitators	Energy efficient slurry transfer pumps				
Spray dryer (for	tile manufacturing unit)				
Use of energy efficient fan	Energy efficient motors installation for spray dryer ID fan				
Insulation to reduce radiation losses across spray dryer	Waste heat recovery from exhaust				
Cast house (for pottery ware unit)					
Use of energy efficient BLDC ceiling fans for drying the raw ware					
	Others				
Use of blunger technology in place of ball mill	Use of solar energy for pumping				

3.2.3. Energy Efficiency in Utilities

The utilities such as compressed air, electrical distribution systems, lighting and other areas are also energy consuming sections in a ceramic manufacturing unit and here too, several energy efficiency improvement opportunities are available. Following table provides an overview of possible energy efficiency opportunities in utilities areas:

Table 15: Energy efficiency in utilities

Energy efficiency in utilities		
Compressed air system		
Use of energy efficient screw compressors	Transvector nozzle for cleaning purpose	
Optimum generation pressure	Use of VFD in compressor	
Avoiding compressed air leakage	Energy efficient air dryers	
Auto drain valves	Proper distribution systems	
Pneumatic equipment to electric equipment	Appropriate ventilation in compressor room	
Electrical	distribution system	
Automatic power factor controller	Harmonic filters	
Energy efficient transformers	Optimum voltage and line balance	
Optimum loading of transformers	Energy monitoring system	
	Pumps	
Energy efficient pumps	Trimming of impellers	
VFD for pumps	Pumping system layout	
	Motors	
Energy efficient motors	Star to delta conversion	
kVAr compensators	Preventive maintenance	
Optimum loading	Belt driven to direct coupled	
Lighting & Fans		
Use of BLDC ceiling fans	Use of LED	
Use of natural light (light pipe)		
Renewable Energ		
Solar PV installation	Hybrid solar-wind system	

Energy Efficient Technologies – Case Studies

4. Energy Efficient Technologies – Case Studies

The following chapter focuses on some of the above-mentioned technologies which are promising and have been implemented in few ceramic units in and have great potential for implementation. Over the last few years, the units in Ahmedabad ceramic cluster have implemented a lot of energy saving measures and these measures have been replicated in most of the other units within the cluster also. These technologies are described in more detail and wherever possible, a case reference from a unit that has implemented the technology has been included. In most of the examples, typical energy saving data, Greenhouse Gas (GHG) emission reduction, investments, payback period, etc., have been highlighted. As these case studies are included to provide confidence to ceramic tile and pottery ware manufacturing unit to implement technologies, the applicability of these measures may vary from unit to unit and further technical and financial analysis would be required for individual units. Following case studies are mentioned in detail in the subsequent section:

Table 16: Case Studies for ceramic tile manufacturing unit

Sr. No.	Technologies		
	Kiln		
1	Waste heat recovery in roller kiln		
2	Energy efficient coating to reduce the radiation losses in kiln and reduce fuel consumption		
3	Improvement of kiln insulation in roller kiln to reduce radiation losses		
4	Excess air control system to maintain optimum air-to- fuel ratio in kiln		
	Raw material blending		
5	Reduction in ball mill power by installation of VFD on ball mill drive		
6	High speed blunger in place of ball mill		
7	High alumina media in glaze ball mill in the place natural stone/pebbles		
8	Replacement of inefficient centrifugal fans with energy efficient fans in spray dryer		
	Utilities		
9	Installation of VFD in screw compressor to avoid unloading		
10	Installation of screw compressor with VFD in place of inefficient reciprocating compressor		
11	Energy conservation in compressor by modifying airline system		
12	Installation of energy efficient pumps		
13	Installation of energy efficient motors in place of old rewinded motors in ball mill		
14	Maximum demand controller for avoiding excess contract demand penalty		
15	Power factor correction & harmonic mitigation at main LT incomer		
16	Installation of VFD on agitator motor		

w Material Dosage Body Preparation Tile I

Sr. No.	Technologies
17	Installation of on-off controller system in agitator motor
18	Installation of energy efficient motor in place of existing conventional motors in agitator
	Renewable energy
19	Solar rooftop system
	New & innovative technologies
20	Solar-Wind hybrid system
21	CFD application in spray dryer for improving heat transfer
22	Energy efficiency in ceramic kiln through utilization of HHO gas
23	Installation of Energy Efficient burners in place existing old conventional burner in kiln firing
24	Optimization of water consumption by installation of water softener unit
25	Installation of Energy Management System
26	Insulation improvement in Hot air generator for spray dryer
27	Excess air control system to maintain optimum air to fuel ratio in Hot air generator (HAG)

Table 17: Case Studies for pottery ware manufacturing unit

Sr. No.	. Technologies		
	Kiln		
1	1 Waste heat recovery in tunnel kiln		
2	Energy efficient coating to reduce the radiation losses in kiln and reduce fuel consumption		
3	Low thermal mass for reduction of kiln furniture losses in pottery ware units		
4	4 Improvement of kiln insulation in kiln to reduce radiation losses		
5	Excess air control system to maintain optimum air-to- fuel ratio in Kiln		
Raw material blending			
6	Reduction in ball mill power by installation of VFD on ball mill drive		
7	High speed blunger in place of ball mill		
8	8 High alumina media in glaze ball mill in the place natural stone/pebbles		
	Utilities		
9	Retrofit of energy efficient ceiling fans in place of conventional fans.		
10	Transvector nozzle in compressed air hose pipe for mould cleaning application		
11	Maximum demand controller for avoiding excess contract demand penalty		
12	Installation of on-off controller system in agitator motor		

Sr. No.	Technologies		
13	13 Installation of energy efficient motor in place of existing conventional motors in agitator system		
	Renewable energy		
14	Solar rooftop system		
New & Innovative technologies			
15	Solar-Wind hybrid system		
16	Energy efficiency in ceramic kiln through utilization of HHO gas		
17	Installation of Energy Efficient burners in place existing old conventional burner in kiln firing		

4.1. Case studies for tile manufacturing units

4.1.1. Case studies in kiln

4.1.1.1. Waste heat recovery in roller kiln

Unit: M/s Diliso Ceramics, Morbi, Gujarat

Baseline details

The unit has installed a roller kiln for manufacturing tiles with different sizes as 12x18", 12x24" and 12x36". Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones of kilns. There are three heating zones – preheating zone, firing zone & cooling zone. The tiles are heated to up to 1,200°C inside the firing zone and then rapidly cooled in the cooling zone by ambient air through cooling blowers. The cooling air gets heated to 250°C and exhausted. Use of this hot air directly for combustion of fuel (natural gas) can result in significant savings in fuel consumption in the kiln.

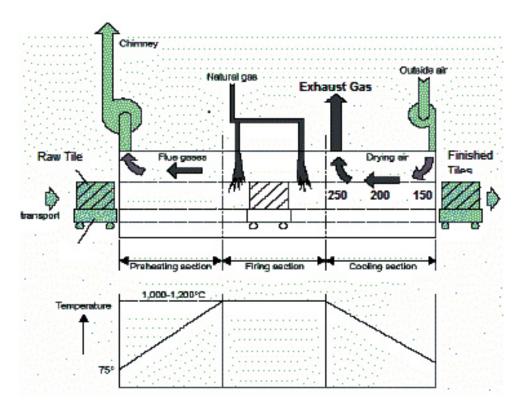


Figure 25: Before implementation – Exhaust chimney at 250°C temperature zone

Implementation Details

The intervention involves shifting the exhaust vent from a temperature zone of 250°C to 200°C. The waste heat will be utilized inside the kiln & less combustion air at ambient temp will be sucked from the combustion blower. Consequently, higher temperature can be maintained in the kiln without any additional fuel.

aw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outpu

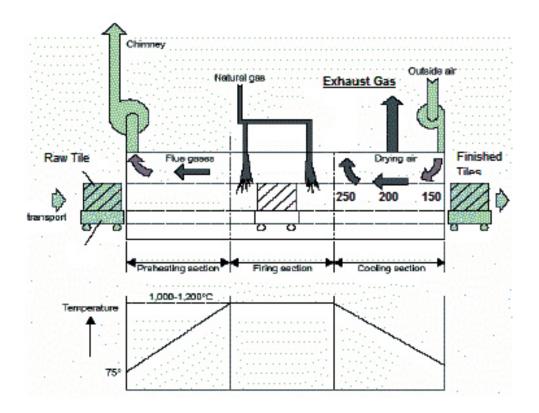


Figure 26: After implementation – Exhaust shifted to 200°C temperature zone

Results:

- Reduced specific energy consumption in kiln
- Increased thermal efficiency
- Reduced fuel (natural gas) costs by 20%
- Increased production
- Increased insulation life by 50%

Specific Energy Consumption in SCM / m² 2.5 Reduction ins SEC observed from March onwards due to Kiln modification. 2 1.95 1.85 1.5 1.47 1.45 1.44 1.42 1.43 1 0.5 Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 Jul-17 Aug-17

Figure 27: Reduction in SEC after implementation of WHR system

aw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outp

Cost Benefit Analysis

The expected energy savings achieved by installing WHR system is 5,754 Lakh kCal annually. The annual monetary saving for this project is INR 19.26 Lakh, with an investment of INR 5.00 Lakh and a payback period of 3 months.

Table 18: Cost benefit analysis – WHR system in roller kiln

Parameter	Value	UOM
Production	560	m²/day
Natural gas consumption before intervention	1,050	SCM/Day
Operational hours	24	Hours /Day
Operational days	321	Days/annum
Natural gas consumption after implementation of WHR project	850	SCM/day
Annual gas consumption before intervention	3,37,050	SCM/annum
Annual gas consumption after intervention	2,72,850	SCM/annum
Annual gas savings due to implementation of measures	64,200	SCM/annum
Cost of natural gas	30	INR/SCM
Total thermal energy cost savings per annum	19.26	INR Lakh/annum
Total investment required to implement this measure	5.00	INR Lakh
Simple payback period	3	Months

Energy & GHG Savings

Replication Potential

Implementation can be done in all other units where a similar kiln is used for production. However, periodic monitoring and measurement of the kiln outside body temperature &

terial Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final O

exhaust air quality is essential. It is also suggested to check the insulation of piping on a regular interval.

Technology Supplier Details for Waste Heat Recovery

Table 19: Technology supplier – Waste Heat Recovery in kiln

Description	Details
	Supplier-1
Name of Company	Neptune Industries Limited
Contact Person	Mr Chandresh
Designation	General Manager
Contact	Mobile: +91-9879206992
Address	VT Industrial Park, Ahmedabad Mehsana Highway, Jagudan, Mehsana 382710, (Gujarat) INDIA.
	Supplier-2
Name of Company	Aspiration Energy
Contact Person	Mr Vijay
Designation	Manager
Contact	Mobile: +91- 73959 23643
Address	No 7, 2nd Trust Link, Road, Mandaveli, Chennai, Tamil Nadu 600028

4.1.1.2. Energy efficient coating inside kiln to reduce the radiation losses in kiln and reduce fuel consumption

Baseline details

Maximum efficiency of the kiln is in the range of 30% to 40% and remaining 60% to 70% are losses from the kiln. Radiation losses account for 15% to 20% of total energy loss. In a roller kiln, the kiln surface temperature at firing zone is in the range of 80 to 100°C. Minimizing the radiation loss from the kiln surface will result in reducing the fuel consumption.

The unit has installed a roller kiln with a total length of 120 metres. The figure shows the various zones in kiln. The surface temperature recorded at various zone is indicated in below table

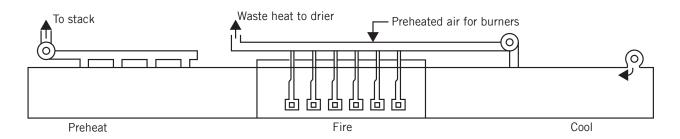


Figure 28: Zones in Roller Kiln

Table 20: Zone wise average temperature in kiln

Zone	Left wall Avg temp (°C)	Right wall Avg temp (°C)
Pre-heating	57	58
Firing	83	94
Cooling Zone	72	62



Figure 29: Surface temperature at firing zone in roller kiln

In order to reduce the radiation losses from kiln surface, the ceramic unit have applied

Body Preparation Tile Pressing Drying Glazing Printing Firing Final Output

energy efficient coating inside the kiln at firing zone and preheating zone. This has resulted in reduction in radiation losses and fuel consumption.

Implementation Details

The energy efficient coating is most suitable for ceramic kiln. It is applied in the kiln on bricks as well as on the exterior of the kiln. The coating is applied in multiple layers and allowed to dry. The coating can withstand temperature up to 1,500°C. This will reduce the kiln surface temperature by 10 to 15°C.

Table 21: Zone wise temperature after applying energy efficient coating in kiln

S.no	Before	After (Expected)
1	Preheating: 58°C	Preheating: 45-50°C
2	Firing Zone: 90°C.	Firing zone: 75-82°C

Results:

- Savings of up to 2 to 5% in fuel consumption.
- Life of coating would be 4-5 years
- Life of ceramic fibre and refractory bricks will increase resulting in indirect savings

Cost Benefit Analysis

The expected energy savings achieved by use of energy efficient coating in kiln is 5,040 Lakh kCal annually. The annual monetary saving for this project is INR 17.00 Lakh, with an investment of INR 8.00 Lakh and a payback period of 6 months.

Table 22: Cost benefit analysis – Energy efficient coatings in kiln in tile manufacturing unit

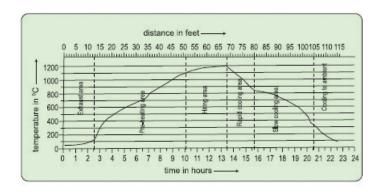
Parameter	Value	UOM
Production	6,510	m²/day
Natural gas consumption (before)	8,500	SCM/day
Natural gas consumption (after)	8,330	SCM/day
Working days	330	Days
Savings in natural gas consumption	56,100	SCM/annum
Cost of natural gas	30	INR/SCM
Savings	17.0	INR Lakh/ annum
Investment (for firing & preheating zone coating area of 2,500 sq ft)	8.0	INR Lakh
Simple payback period	6	Months

Energy & GHG Savings

Technology Supplier Details

Table 23: Technology Supplier Details – Energy efficient coatings in kiln

Description	Details
	Supplier-1
Name of Company	Innovative Surface Coating Technology, Nagpur
Contact Person	Mr. Nikhilesh R
Designation	Co-Founder
Contact	Mobile: +91-8788384913
	Supplier 2
Name of Company	HIR Industries, Himatngar, Gujarat
Contact Person	Mr. David Patel
Designation	Director
Contact	Mobile: +91-9099021334

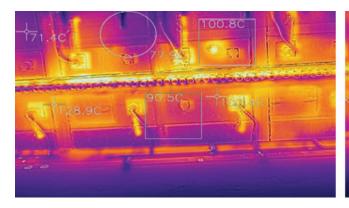


4.1.1.3. Improvement of kiln insulation in roller kiln to reduce radiation losses

Baseline details

The unit has installed a roller kiln of production capacity 2,500 m²/day for Vitrification process of tiles. Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones of kilns. Kiln has three zones – preheating zone, firing zone & cooling zone. Firing cycle of the typical kiln is as follows

The kiln firing is done in two stages:


- 1) Preheating zone (500-750°C).
- 2) Firing zone (1,100-1,250°C).

After firing, tiles are cooled in two zones:

- 1) Rapid cooling zone (600-900°C).
- 2) Cooling zone (200-500°C).

Figure 30: Firing Cycle

Maximum efficiency of the Kiln is in the range of 30% to 40% and remaining 60% to 70% are losses from the kiln. Out of these losses percentage of radiation loss is coming out to be in the range of 15% to 20% of total energy supplied.

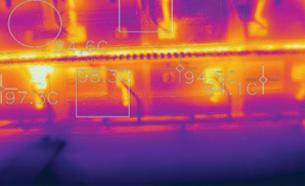


Figure 31: Thermal Image of Roller Kiln

Implementation Details

This radiation loss can be reduced by replacing the damaged insulation and improving the existing insulation of the kiln. Insulation improvement leads to saving in fuel consumption in kiln.

e Body Preparation Tile Pressing Drying Glazing

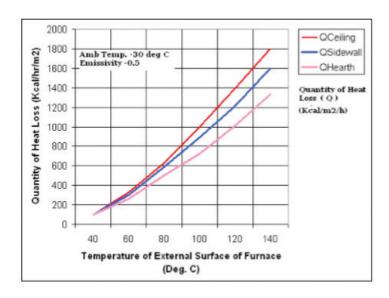


Figure 32: Quantity of heat loss from surface vs temperature

Results:

- Reduced specific energy consumption in kiln
- Increased thermal efficiency

Cost Benefit Analysis

The expected energy savings achieved by replacing the damaged insulation with a new one is 5,206 Lakh kCal annually. The annual monetary saving for this project is INR 17.0 Lakh, with an investment of INR 20.00 Lakh and a payback period of 15 months.

Table 24: Cost benefit analysis – Kiln insulation improvement

Parameter	Value	UOM
Production	2,200	m²/day
Natural gas consumption before intervention	3,200	SCM/Day
Operational hours	24	Hours /Day
Operational days	350	Days/annum
Natural gas consumption after implementation of intervention	3,040	SCM/day
Annual gas consumption before intervention	11,20,000	SCM/annum
Annual gas consumption after intervention	10,64,000	SCM/annum
Annual gas savings due to implementation of measure	56,000	SCM/annum
Cost of natural gas	30	INR/SCM
Total thermal energy cost savings per annum	16.80	INR Lakh/annum

Parameter	Value	UOM
Total investment required to implement this measure	20.00	INR Lakh
Simple payback period	15	Months

Replication Potential

Implementation can be done in all other units where a similar kiln is used for production. However, periodic monitoring and measurement of the kiln outside surface temperature is essential.

Technology Supplier

Table 25: Technology supplier details – Kiln insulation

Description	Details
Name of Company	Cumi Morgan Advance Materials
Contact Person	Mr Alpesh Gupta
Designation	Director
Contact	Mobile: +91 9824013885

4.1.1.4. Excess air control system to maintain optimum air to fuel ratio in Kiln

Baseline details

Kiln performance is directly related to the temperature maintained at various zones & thermal efficiency of kiln. Excess air level in the combustion play a vital role in optimizing the fuel consumption and combustion efficiency of kiln firing. The excess air level is calculated based on the amount of oxygen in the exhaust flue gases.

Excess air = $(0_{3})/(21-0_{3})$ x 100%

Where O₂=% oxygen in flue gas

Excess air level in combustion air to be maintained at optimum level as too much of excess level results in excessive heat loss in exhaust flue gas and maintaining little excess air results in incomplete combustion and formation of carbon monoxide in flue gases. One of the causes of high excess air is improper or outdated control system in burner firing.

Parameter	Va	Value	
	At kiln Exhaust	At Kiln Firing	
0,	17.3	8	%
CO	131	65	PPM
CO ₂	2.4	6.1	%
Excess air	467	61.54	%

Table 26: Flue gas analysis & excess air in one of the kiln

Implementation Details

It is recommended to maintain $\%O_2$ in flue gas in the range of 3-5%. For maintaining the optimum excess air level and air to fuel ratio, a PID based air and gas flow control system is to be installed in burner firing circuit.

In air flow control system, an O_2 sensor is to be installed in exhaust fuel gas and VFD on combustion air fan. The sensor senses the O_2 & provides the feedback/input to PID controller. The PID controller provide input to the combustion air fan VFD to control the speed and thereby control the volume of air to be required for complete combustion with optimum excess air.

⁸ Case Study – Cleaner Production in Ceramic Sector A strategy for Pollution Prevention prepared by Gujarat Cleaner Production Centre (Established by Industries & Mines Department, Government of Gujarat) March 2016

Results:

- Reduced specific energy consumption in kiln
- Increased thermal efficiency
- Reduced fuel (natural gas) costs by 10%

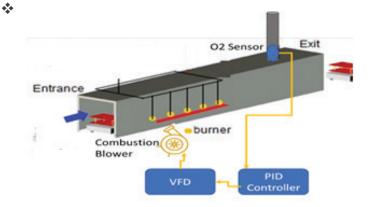


Figure 33: PID & VFD based excess air control system

Cost Benefit Analysis

The expected energy savings achieved by optimizing the excess air is 4,144 Lakh kCal annually. The annual monetary saving for this project is INR 13.44 Lakh, with an investment of INR 20.00 Lakh and a payback period of 15 months.

Table 27: Cost benefit analysis – Excess air control system in kiln

Parameter	Value	UOM
Production	2,200	m²/day
Natural gas consumption before intervention	3,200	SCM/Day
Operational hours	24	Hours /Day
Operational days	350	Days/annum
Natural gas consumption after implementation of the project	3,072	SCM/day
Annual gas consumption before intervention	11,20,000	SCM/annum
Annual gas consumption after intervention	10,75,200	SCM/annum
Annual gas savings due to implementation of the measure	44,800	SCM/annum
Cost of natural gas	30	INR/SCM
Total thermal energy cost savings per annum	13.44	INR Lakh/annum
Total investment required to implement this measure	20.00	INR Lakh
Simple payback period	18	Months

Replication Potential

Implementation can be replicated in all the kilns.

Technology Supplier

Table 28: Technology supplier details – Excess air control system in kiln

Description	Details
Name of Company	Wesman Thermal Engineering
Contact Person	Mr Tushar Shah
Designation	General Manager
Contact	Mobile: +91-9879206992

4.1.2. Case studies in Raw Material Blending

4.1.2.1. Reduction in ball mill power by installation of VFD on Ball Mill drive

Unit: M/s Uday Ceramic, Morbi

Baseline details

The unit has installed a ball mill with capacity 40 MT and 250 hp drive for grinding of raw materials. Ball mill is a batch type grinding process and used in all types of ceramic units. As per the process requirement, motor should run at full speed during the start of batch and after a particular time period, it should rotate at lower speed. Existing unit has no control system installed and operates directly on starter.

Implementation Details

A VFD is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor. A variable frequency drive is a specific type of adjustable-speed drive which controls the speed of motor according to the requirement. The speed of the motor can be reduced by installing variable frequency drive on ball mill motor and operating speed can be programmed based on time. This will result in saving in power consumption to the extent of 15% in ball mills and blunger. This concept is applicable to glaze preparation ball mill in glaze section also. The project is successfully implemented in few ceramic units.

Results:

- Reduced specific energy consumption
- Reduction in electricity consumption in grinding process by 15%

Cost Benefit Analysis

The expected energy savings achieved by installing VFD in ball mill drive is 0.98 Lakh kWh annually. The annual monetary saving for this project is INR 6.82 Lakh, with an investment of INR 5.50 Lakh and a payback period of 10 months.

Table 29: Cost Benefit analysis – VFD in ball mill drive

Parameter	Values	UOM
Capacity of ball mill	40	MT
Ball mill motor capacity	250	hp

aw Material Dosage Body Preparation

ition

ile Pressing

Drying

Glazing

Printin

• • • • •

Parameter	Values	иом
Operational hours	12	hrs/day
Operational days	330	Days/annum
Ball mill annual energy consumption (before)	6,50,226	kWh/annum
Ball mill annual energy consumption after installation of VFD and optimizing the speed (15% savings)	5,52,692	kWh/annum
Annual energy savings	97,534	kWh/annum
Annual monetary savings	6.82	INR Lakh/annum
Investment for VFD	5.50	INR Lakh
Simple Payback Period	10	Months

Replication Potential

The project can be implemented in all other units where a similar kind of ball mill is used. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 30: Technology Supplier details for VFD

Description	Details
Name of Company	Danfoss Industries Pvt Ltd
Contact Person	Mr Hiran Thakkar
Designation	Manager
Contact	Mobile: +91-7940327341
Address	No. 703, 7th Floor, Kaivanna Complex, Opp. Bank of Baroda, Near Panchwati Cross Road, Ahmedabad-380015

4.1.2.2. High speed blunger in place of ball mill for raw material grinding

Baseline details

In ceramic product manufacturing process, ceramic body preparation is one of the important process. This process includes mixing of raw material with water to produce slurry. Most of the units in the cluster use ball mills for this operation ranging 6 MT to 40 MT capacity. Generally, usage of ball mills will consume more time in loading and unloading as material is to be fed from small opening at the top. This is turn requires more manpower. It also requires grinding media for the operation, which will consume half of the space, so less productivity is achieved when compared to blunger technology.

The starting torque of ball mill motor is high due to uneven starting load, which consumes more power than the normal operation.

Figure 34: Conventional Ball Mill system

Implementation Details

Blunger is a machine which can rapidly blunge raw material without changing non plastic raw material structure using stator rotor mechanism. The turbo blunger is a heavy-duty blunger used for rapid preparation of slip, achieving an 80% reduction in the blunging time compared to normal propeller-type dissolvers. It is operated by means of a special rotor fixed to the bottom of the tank, which propels the material against a ring of fixed paddles (1st phase). An auxiliary impeller, available on request, is fixed at a point halfway up in the tank for the blending of material in powder form (quartz, feldspar) with the slip (2nd phase). The average dissolving time for raw or already treated clay, including loading and unloading operations, is approx. 2 hours for a liquid with a specific weight of 1.4 kg/m³. The average duration of the 2nd phase is 1 hour for a liquid with a specific weight of 1.8 kg/m³. Due to less cycle time (2 to 2.5 hrs) as compare to ball mill and lees weight, energy saving is achieved.

All parts involved in the dissolving process (rotor, fixed paddles, base of tank) are constructed in special steel of high wear resistance and easy to replace. All heavy-duty blungers are furthermore provided with a trap for collection of stones, which are periodically removed.

Body Preparation Tile Pressing Drying Glazing Printing

Maintenance is extremely simple and reduced to a minimum.

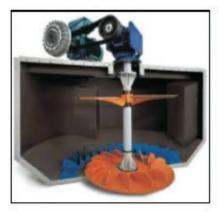


Figure 35: High Speed Turbo Blunger

Cost Benefit Analysis

The expected energy savings achieved by use of high speed blunger is 0.99 Lakh kWh annually. The annual monetary saving for this project is INR 6.45 Lakh, with an investment of INR 12.00Lakh and a payback period of 23 months.

Table 31: Cost benefit analysis – High speed blunger

Parameter	А	В	UOM
	Ball mill	High speed blunger	
Charge Production	24	24	TPD
Capacity	6	5	MT
No of ball mills/blunger	2	2	Nos
Motor capacity	40	20	hp
Power consumption	23.8	14	kW
Operational hours for one charging	5	3	hrs/batch
Power consumed in 720 MT charges per month	14,323	6,048	kWh/month
Total power consumption per annum	1,71,876	72,576	kWh/annum
Electricity cost per annum	11.17	4.71	INR Lakh
Annual monetary saving	6.45		INR Lakh/annum
Investment	12,00		INR Lakh
Simple payback period	23		Months

Replication Potential

The project can be implemented in all the ceramic units.

Technology Supplier Details

Table 32: Technology supplier details – High speed blunger technology

Description	Details
Name of Company	Dynovo Global Solutions Pvt Ltd, Mumbai
Contact Person	Mr. Jatan Shah
Designation	Managing Partner
Contact	Mobile: +91-9699817245
Address	203, Crystal Tower, 75 Gundavali Road No. 3, Off, Sir Mathuradas Vasanji Rd andheri East, Mumbai, Maharashtra 400069

4.1.2.3. High alumina media in glaze ball mill in the place natural stone/pebble

Baseline details

Ball mills are used for raw material and glaze grinding. The grinding of the material takes place due to the impact of the balls inside the ball mill. Most of the units in the cluster use natural stone as a media for grinding. Generally, these media are mined or naturally available stoned pebbles and are very irregular in shape and size. Such non-uniform grinding media take higher time for grinding and generate higher residue.

Figure 36: Mined Stone Pebble

Figure 37: High Alumina Ball

Implementation Details

As compared with natural pebbles grinding media, the alumina grinding balls have better performance in terms of wear resistance, uniform size, high density and high mechanical strength. The high density and ultra-hardness of the alumina grinding ball enable increased loading of ball mill. The alumina grinding ball is compact and uniform in shape, increasing the colliding

probability and grinding efficient. The alumina grinding ball can help in less contamination to the raw material and keep the chemical composition stabilized. Thus, the alumina grinding ball is a better option for glaze grinding that ensures quality of production.

Other benefits of using alumina balls is wear & tear of balls which is about 0.2%, is very less as compared to natural stone/pebble, which is about 2.0%.

Cost Benefit Analysis

The expected energy savings to be achieved by use of high alumina balls in place of stone/pebble is 0.375 Lakh kWh annually. The annual monetary saving for this project is INR 2.52 Lakh, with an investment of INR 5.00 Lakh and a payback period of 23 months.

ration Tile Pressing Drying

Table 33: Cost benefit analysis – High Alumina balls for grinding in ball mill

Parameters	Natural Media	High Alumina	Units
Electrical motor capacity*	15	15	hp
Grinding hour for one charge	21	11	Hrs
Power consumed per one charge	234.4	122.7	kWh
Total Charge per month	28	28	
Total power consumption per month	6,562	3,437	kWh
Cost of power per unit	7	7	INR/kWh
Cost of power consumption per month	0.45	0.24	INR Lakh
Monetary savings annum	2.52		INR Lakh/annum
Investment	5.00		INR Lakh
Simple payback period	23		Months

^{*} Considering ball mill size of 6 FT X6FT with material load of 2,000 kg

Replication Potential

It can be replicated in all ball mills operating with natural stone/pebble as grinding media.

Technology Supplier Details

Table 34: Technology Supplier Details – Alumina Lining and Grinding Pebbles

Description	Details
Name of Company	Parishram Enterprise, Thangadh
Contact Person	Mr. Vinu Bhai
Designation	Managing Partner
Contact	Mobile: +91-98253 75834
Address	Near Ranuja ceramic, Thangadh, Gujarat 363530

law Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outp

4.1.2.4. Replacement of inefficient centrifugal fans with energy efficient fans in spray dryer

Unit: M/s Murugappa Morgan Thermal Ceramic Limited, Kalol

Baseline Scenario

In ceramic tile manufacturing unit followed by, centrifugal fans and blowers are installed in various areas like spray dryer, kiln combustion, kiln preheating, rapid cooling fan and cooling fan with connected load varying from 15-30 hp for kiln blowers and 100-150 hp for spray dryer fan.

In centrifugal fans, to achieve maximum operating efficiency, the operating point should be very close to the design point. Any mismatch in terms of operating pressure or capacity with the design parameters, would result in lower operating efficiency and would result in higher power consumption. The reasons for lower operating efficiency could be over sizing of the fan, ageing and wearing of impeller.

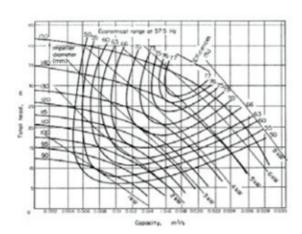


Figure 38: Typical characteristic curve of centrifugal fan

Implementation Details

The latest centrifugal fans are available with operating efficiency as high as 80%. Hence there is a good potential to save energy by replacing the existing fans with correct size high efficiency fans. During a study to measure the actual efficiencies of the fan, the following parameters were measured.

- Actual flow delivered by the fan in m³/sec
- Actual head developed in mm WC
- Actual power consumed in kW

Based on the actual measurements it was estimated that the operating efficiencies of fans are in the range of 45% & 47% respectively. The typical benchmark for efficiencies for these applications is 75%.

Body Preparation Tile Pressing D

Table 35: Operating parameters of existing fans

Parameter	DC Fan	PRYO Wool Bin fan	UOM
Fan flow	10,258	30,495	m³/hr
Head developed	245	438	mmWc
Motor power drawn	22	200	kW
Fan operating efficiency	45.03	46.65	%

Cost Benefit Analysis

The expected savings by installation of energy efficient centrifugal fan for spray dryer and combustion blower is 1.60 Lakh kWh annually. The annual monetary saving for this project is INR 11.18 Lakh with an investment of INR 4.35 Lakh and payback for the project is 6 months.

Table 36: Cost Benefit Analysis – Energy efficient centrifugal fans

Parameter	Combustion blower	Spray dryer fan	UOM
Fan flow	10,258	30,495	m³/hr
Head developed	245	438	mmWc
Motor power drawn	22	200	kW
Efficiency	45.03	46.65	%
Energy efficient fan flow	10,500	31,000	m³/hr
Energy efficient fan head	260	450	mmWc
Energy efficient fan power drawn	11	75	kW
Energy savings	15,840	1,44,000	kWh/annum
Energy savings	1.10	10.08	INR Lakh/annum
Investment	0.55	3.80	INR Lakh/annum
Simple payback period	6	5	Months

Replication Potential

Learning from successfully implementing energy efficient centrifugal fans can be applied in the areas of spray dryer and kiln combustion fans in tile manufacturing unit.

Technology Supplier Details

Table 37: Technology supplier details – Energy efficient centrifugal fan

Description	Details
Name of the company	Tech Flow Enterprise Pvt Ltd
Contact Person	Mr. Bharat Davda
Contact no.	+91-9978224704
Address	803/B/1, Near Canal, Kubadthal Village, Off. Kunjad Kathlal Road, Via. Kathwada S.P. Ring Road Circle, Ahmedabad - 382430, Gujarat

4.1.3. Case studies in Utilities

4.1.3.1. Installation of VFD in Screw Compressor to Avoid Unloading

Baseline Scenario

Compressed air in ceramic unit is used for instrument air application, mould preparation and glazing. The ceramic unit under consideration has installed 30 hp screw compressor to cater to the requirements in the process & instrumentation section. The maximum working pressure of the compressed air in the system is in the range of 6-7 kg/cm². The operating characteristics of the compressor is as shown:

Table 38: Compressor loading pattern

Tag No	Load %	Unload %	Load power, kW	Unload power, kW
Compressor-22kW	60.5	39.5	22 kW	7.6 kW

It can be seen that the loading of the compressor is only 60.5%. As the actual compressed air requirement for the process is lesser than the capacity of the compressor, compressor is operating in unloading condition for 39.5 % of the time resulting in waste of energy. During the unload condition, there is no useful work done by the compressor, but the motor is in operating condition resulting in wastage of power. Avoiding or reducing the compressor unloading will results in power saving.

Concept of VFD

Any compressor is designed to go into load & unload conditions. The load & unload pressures for any compressed air system is set such that the average pressure delivered will be the required system pressure. The higher the pressure set point; more will be the power consumption of the compressor.

Also, in the present scenario, the installed compressor is of much higher capacity as compared to the system requirement, which is clear from the 39.5% unload that the compressor is operating with.

The compressor unloading can be avoided by installing variable frequency drive (VFD) in the compressor. The difference between the normal & VFD condition in a compressor is as shown below:

Body Preparation Tile Pressing Drying

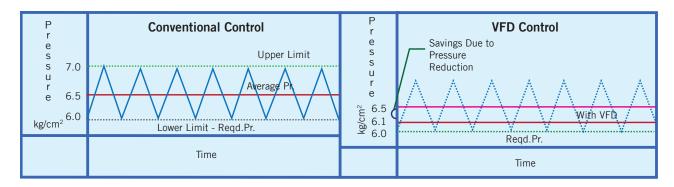


Figure 39: Capacity control of compressor

For example, for a compressor operating between load pressure of 6 kg/cm² & unload pressure of 7 kg/cm²; the average pressure is 6.5 kg/cm², (bandwidth 1 kg/cm²). The power consumption of the compressor operating constantly at 6 kg/cm² with VFD comes down by 5 to 6%. By installing a VFD, it is possible to maintain a bandwidth of 0.1 kg/cm². As can be seen from the figure, the VFD can be given a set point equal to that which is required in the system. The additional power that the compressor consumes over the required pressure will be the savings achieved.

Implementation details

It is recommended to install VFD and operate that with closed loop for all the above listed compressor to avoid the unloading of the compressor. The feedback for VFD can be given as required receiver pressure. By installing VFD, the compressor can be operated in a pressure bandwidth of ±0.1 bar.

Cost Benefit Analysis

The expected savings by installation of VFD in the compressor is 0.18 Lakh kWh annually. The annual monetary saving for this project is INR 1.03 Lakh with an investment of INR 0.90 Lakh. Payback period for the project is 11 months.

Table 39: Cost Benefit Analysis – VFD in screw compressor

Parameters	Value	UOM
Unloading power of compressor	7.6	kW
Percentage unloading	39.5	%
Power savings	2.31	kW
Annual operating hours	7,900	Hrs
Annual energy savings	18,249	kWh
Power cost	5.66	INR/kWh
Annual savings	1.03	INR Lakh/annum
Investment	0.99	INR Lakh
Simple payback period	11	Months

Technology Supplier Details

Table 40: Technology Supplier Details – VFD for screw compressor

Description	Details
Name of the company	Tirupati Automation, Morbi
Contact Person	Mr. Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415, +91-8000682152
Address	Shiv Plaza-2, Shop No-14 & 15, Matel Road, At- Dhuva, Ta. Wankaner, Dist. Morbi (Gujarat)

4.1.3.2. Installation of screw compressor with VFD in place of reciprocating compressor

Baseline Scenario

Compressed air in ceramic units is used for instrument air, mould preparation and glazing process. Most of the units are using reciprocating type compressors without any automation; these compressors run on load/unload mode. The percentage of loading depends on the process requirement.

Generally, compressor in ceramic units run on 60 – 70% in loaded condition remaining 30 – 40% in unload condition. During unload condition, the compressor does not deliver any air, but consumes unload power, which increases the specific power consumption.

Figure 40: Reciprocating Compressor

On other hand, reciprocating compressor due to its design is prone to wear & tear and thus the compressor volumetric efficiency reduces over a period of time.

Implementation Details

The existing compressor has been replaced with energy efficient screw air compressor with VFD. VFD operated screw compressor has two functions: one, it varies RPM of compressor based on pressure variation at the load and two, it also reduces no load power consumption during unloading condition by bringing the motor to a halt. Such operation prevents consumption of power during unload condition.

Merits

- Maintenance is simple in screw-based air compressors.
- By using VFD in screw air compressors, the operating pressure of air compressor can be precisely controlled.
- The leakage in the compressed air system is proportional to the operating pressure.

Cost Benefit Analysis

The expected savings by installation of energy efficient screw compressor in place of reciprocating compressor is 0.61 Lakh kWh annually. The annual monetary saving for this project is INR 4.01 Lakh with an investment of INR 9.80 Lakh and payback for the project is 29 months.

Table 41: Cost Benefit Analysis – Screw compressor with VFD in place of reciprocating compressor

Parameters	Value	UOM
Total installed capacity	4.25	m³/min
Actual air delivery	3.05	m³/min
Volumetric efficiency	71.66	%
Input motor power	28	kW
Specific power consumption	9.19	kW/m³/min
Proposed power consumption	6	kW/m³/min
Reduction of power consumption	18	kW
Reduction in annual energy consumption	61,285	kWh/annum
Monitory savings	4.01	INR Lakh/annum
Investment	9.8	INR Lakh
Simple payback period	29	Months

Replication Potential

Learnings from successfully implementing energy efficient screw compressor with VFD system in few ceramic units can be used very well to replicate at other ceramic units.

Technology Supplier Details

Table 42: Technology Supplier details – Screw compressor with VFD

Description	Details
Name of the company	Kaeser Compressor
Contact Person	Mr. Jignesh
Email Id	jignesh.shah@kaeser.com
Phone No	+91-9909944506
Address	Sakar-9, 1105, Ashram Rd, beside Old Reserve Bank, Muslim Society, Navrangpura, Ahmedabad, Guiarat 380009

4.1.3.3. Energy conservation in compressor by modifying airline system

Baseline Scenario

The existing system is made up of metallic pipeline having a lot of joints & welds, due to which there was a lot of frictional loss & leakage, which lead to energy loss. The new pipe material has a smooth surface inside, which can minimize frictional losses. This material can be bent easily so that there is no necessity to use joiners. With the use of this material, we can minimize joints and hence avoid air leakage. This will help minimize energy consumption.

Figure 41: Existing compressed air piping

Figure 42: HDPE Aluminum Pipeline

Implementation Details

Multilayer pipes (MLC) (Generic Name Pe-Al-Pe Pipe) are made of five layers. The inside & outside layers comprise of HDPE (High Density Polyethylene) tightly bonded with melt adhesives to intermediate layer of aluminium core, which is longitudinally overlapped. These pipes offer the advantages of both metal and plastic pipe, with none of

their shortcomings. The working life of MLC pipes is more than 20 years.

Because the internal surface of the MLC pipes is smooth, the pressure drop / friction losses in these pipes is 30% lower than GI pipes. MLC Pipes are bendable and hence require a smaller number of fittings and require minimum joints. MLC Pipes are corrosion resistant and scale free. Plastic layer resist deterioration by corrosion due to moisture. There will be some friction loss in MLC pipe due to internal fittings, but the overall performance of the Piping System will be better than other pipes as there are a smaller number of fittings required.

Merits

- Reduction in air leakages.
- Life cycle is more than 12 15 years.

y Preparation Tile Pressing Drying

Cost Benefit Analysis

The expected savings by installation of HDPE aluminium piping is 0.38 Lakh kWh annually. The annual monetary saving for this project is INR 2.85 Lakh, with an investment of INR 3.50 Lakh and the payback for the project is 15 months.

Table 43: Cost benefit analysis – HDPE aluminium pipe

Parameters	Value	UOM		
Before: 50 hp Compressor operating				
Energy consumption per hour	37.5	kW		
Energy consumption for two shifts/day	600	kWh		
Energy consumption for 26 working days	15,600	kWh		
After Implementation: 40 hp Compressor operating				
Energy consumption per hour	30	kW		
Energy consumption for two shift/day	480	kWh		
Energy consumption for 26 working days	12,480	kWh		
Saving in energy	37,440	kWh/annum		
Saving	2.85	INR Lakh/annum		
Investment	3.50	INR Lakh		
Simple payback period	15	months		

Energy & GHG Savings

Replication Potential

This technology has been adopted by the foundry unit and similar application can be done in all ceramic manufacturing units.

taw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outpu

Technology Supplier Details

Table 44: Technology Supplier Details – HDPE Aluminum Piping

Description	Details
	Supplier - 1
Supplier Name	M/s S R Enginers
Contact Person	Mr Rajesh
Phone No.	+91-8688876444
Address	Chennareddy Enclave Road, Indira Nagar Colony, Shanakar Nagar, Peerzadiguda, Hyderabad, Telangana -500039
	Supplier - 2
Supplier Name	Godrej & Boyce Mfg. Co. Ltd.
E-mail	casene@godrej.com
Phone No.	+91-22-67962258 / 1104
Address	E & E Services – Compressed Air Management Solutions Pirojshanagar, Vikhroli, Mumbai – 400 079, India.

4.1.3.4. Installation of energy efficient pumps

Baseline Details

The ceramic unit uses water for wet grinding in ball mill to prepare the ceramic product body raw materials. The units have borewell pumps installed for the pumping raw water for use in grinding and also for other purpose. Many units are using conventional pumps with standard motors which is having low operating efficiency. There exists a good potential to optimize the power consumption for raw water pumping.

Brief about the technology innovation

The S4RM (Shakti Slip Start Synchronous Run Motor) offers one of the most energy efficient pump system. This innovation is based on incremental efficiency improvement in both i.e. pump as well as motor. The S4RM technology-based motors are magnetic motors which are line start i.e. they do not require any VFDs to operate; thus, they are a direct replacement of conventional induction motors. The motor with this technology starts asynchronously and runs at a synchronous speed in steady state, thereby leading to combined advantages of induction (self-start) and synchronous motor (high efficiency). This technology is implemented for both surface and submersible type of motor-pump applications.

As it is a magnet-based motor, the runtime efficiency of the S4RM motor is 5-10% higher than that of an induction motor on account of reduction in stator copper losses and removal of rotor electrical losses. The S4RM takes reduced starting current up to 50% as compared to other motors. It thus offers a long life of motor insulation as the starting current is lesser. Power factor is close to unity which reduces distribution losses and PFC capacitors.

The S4RM is a retrofit energy efficient technology. The technology is available till 75 hp of power range. The overall energy consumption can be reduced to 50% in some cases. S4RM runs at full speed irrespective of voltage and load therefore can improve production in industry environment.

Table 45: Comparison between conventional pump set and S4RM pump

Description	Unit	Conventional pump set	S4RM pump
Capacity of motor	hp	10	10
Head developed by pump	m	64	64
Discharge by pump	LPM	467	467
Motor efficiency	%	74	93.3
Pump efficiency	%	61	76
Overall efficiency of pump set	%	45.1	72.8
Input power	kW	9.0	6.71

Cost Benefit Analysis

The expected energy savings to be achieved by installation energy efficient pump is 9,108 kWH annually. The annual monetary saving for this project is INR 0.64 Lakh, with an investment of INR 1.50 Lakh and a payback period of 28 months.

Table 46: Cost Benefits Analysis EE Pumps

Description	Value	UOM
Pump operating hours	12	hrs/Day
New pump power	6.71	kW
Existing pump power	9.0	kW
Energy saving	2.3	kW
Energy saving per annum	9,108	kWh
Total annual monetary savings	0.64	INR Lakh/annum
Total investment	1.50	INR Lakh
Simple payback period	28	Months

Energy & GHG Savings

Replication Potential:

This energy efficient pump set can be installed to replace existing conventional pump sets in the entire sector.

Technology Supplier Details

Table 47: Technology Supplier Details – Energy efficient pumps

Description	Details
Name of Company	Shakti Pumps Limited
Contact Person	Mr. Kaushal Patel
Contact	Mobile: 7600030825
Email Id	Kaushal.patel@shaktipumps.com
Address	501, Sarkar 5 , Behind Natraj Cinema, Ashram Road, Ahmedabad – 380009

4.1.3.5. Installation of energy efficient motors in place of old rewinded motors in ball mill

Unit: M/s Excel Ceramic Pvt Ltd, Morbi

Baseline details

The unit has installed a ball mill with capacity 40 MT and 250 hp drive for grinding of raw materials. As per the process requirement, motor should run at full speed during the start of batch and after a particular time period it should rotate at less speed. The detailed assessment study of the ball mill, actual power consumption was done. The electrical motor drives installed for ball mills were found to be rewinded multiple times because of which the body temperature and electricity consumptions was observed to be very high as compared to similar size ball mill motor.

Implementation Details

IE3 standard motors will improve motor operating efficiency as compared to old rewinded motors. IE3 motors have superior efficiency and can be operated from 50% to 100% since they have flat curve than conventional motors due to:

- Increasing the mass of rotor conductors/ conductivity.
- Precision air gaps to reduce current requirements.
- Improved winding and lamination design to minimize power consumption.

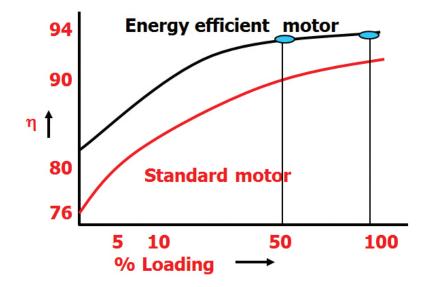


Figure 43: Percentage loading for energy efficient motors

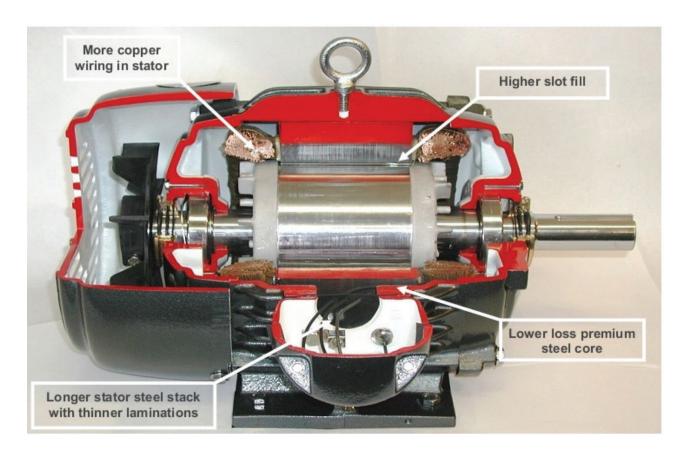


Figure 44: Energy Efficient Motors

To optimise batch timing, the unit has replaced existing 200 kW rewinded motor drives with energy efficient IE3 standard motor drives of same rating. The electrical energy reduction is approximately 10% from the actual consumption. The electrical wiring and associated infrastructure remain same and only motor was changed from the gear coupling.

Results:

- Reduced specific energy consumption
- Increased electrical efficiency

Cost Benefit Analysis

The energy savings achieved by installing energy efficient motor is 1.21 Lakh kWh annually. The annual monetary saving for this project is INR 9.60 Lakh, with an investment of INR 6.50 Lakh and a payback period of 8 months.

Table 48: Cost Benefit analysis – Energy efficient motor for ball mill

Parameter	Values	Units
Motor output in kW	200	kWh
Motor efficiency (Old motor)	80	%
New motor efficiency (IE ₃ motor)	95.4	%

Parameter	Values	Units
Operating hours	3,000	Hrs
Power consumption with old motor	7,50,000	kWh/annum
Power consumption with new IE3 motor	6,28,931	kWh/annum
Annual energy savings	1,21,069	kWh/annum
Annual energy savings cost	9.68	INR Lakh/annum
Investment	6.50	INR Lakh
Simple payback period	8 months	Months

Replication Potential

This method can be adopted in all other units where old motors are installed and rewinded more than twice. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 49: Technology Suppliers – Energy Efficient motors for ball mill

Description	Details
Name of Company	Rotomotive Drives
Contact Person	Mr Gagendra
Designation	Manager
Contact	Mobile: +91-9377511911
Address	223, Napa Talpad,, Gana Borsad Road, Taluka Borsad., Anand, Gujarat 388560

ndy Preparation Tile Pressing Γ

Gla

Printing

4.1.3.6. Maximum demand controller for avoiding excess contract demand penalty

Unit: M/s ESSCE Infrastructure Pvt. Ltd., Tuticorin, Tamilnadu

Baseline details

In the abve unit, from electricity bill it is observed that monthly average actual maximum demand is 291.55 kVA, which exceeds stipulated quota demand of 164.5 kVA. Whereas from the study it is observed that unit's average normal demand at full load operation (with all sections in load) should not go beyond 200 kVA. As a result, the unit is paying demand charges @ INR 350/kVA on basic recorded kVA demand as well as excess kVA demand charges after adjustment @ INR 700/kVA. Hence, the unit must pay attention more on maximum demand reduction strategy.

Proposed system

The unit has installed a new generation Maximum Demand Controller with at least four relay outputs that are to disconnect non-critical loads, on different time periods and avoid connecting loads simultaneously to reduce the instantaneous power.

Non-critical loads are those that do not affect the main production process or that are not essential, such as:

- Lighting
- Compressor
- Office air-conditioning systems
- Field Pumps
- Packaging machines
- Canteen loads

Maximum Demand Controller should incorporate an internal power analyzer for the maximum demand calculation (it also records electrical parameters such as voltage, current and power). Every time controller detects a power excess, this will disconnect several lines with non-critical loads, reducing automatically the instantaneous power. This will ensure that the installation will reduce the demand, hence reduction of penalties or excess over drawl charges beyond quota limit of electricity bill.

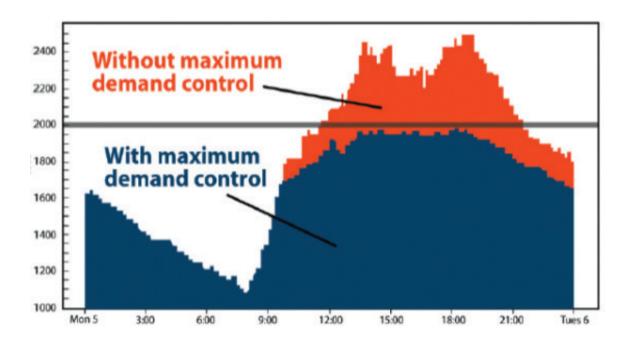


Figure 45: Demand variation with and without demand control

Cost Benefit Analysis

By installing new generation maximum demand controller cost saving potential of INR 2.30 Lakh can be achieved with an investment of INR 2.10 Lakh with a payback period of 11 months.

Table 50: Cost Benefit Analysis – Maximum Demand Controller

Parameter	Value	Units
Excess demand	27.4	kVA
Excess demand charges	700	INR/kVA
Annual savings	2.30	INR Lakh/annum
Investment required	2.10	INR Lakh
Simple payback period	11	Months

Technology Supplier Details

Table 51: Technology Supplier – Maximum demand controller

Description	Details
	Supplier - 1
Supplier Name	YoUDIt Approaches Private Limited
Contact Person	Mr. Priyaranjan Sinha
Email Id	youdit@youdit.co.in
Phone No	+91-9811456950
Address	RPS Palms, Sec-88, Faridabad-121002
	Supplier - 2
Supplier Name	Tirupati Automation
Contact Person	Mr. Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415,+91-8000682152
Address	Shiv Plaza-2, Shop No-14 & 15, Matel Road, At- Dhuva, Ta. Wankaner, Dist. Morbi (Guj)

4.1.3.7. Power factor correction & Harmonic Mitigation at main LT incomer

Baseline details

In the existing unit facility, due to harmonic and capacitor deration the power factor at the LT Main incomer is observed lower than 0.95 and the total harmonic distortion is observed to be 40%. Existing detuned APFC and normal APFC for reactive compensation was ineffective. Harmonics was very high at load level as well as at LT incomer. Due to reduction of power factor, the kVA billing in the unit facility increased.

Effect of Harmonics:

- Extra heating/noise of transformers
- Circuit breaker & protective relays malfunction
- Erratic operation of computers, telecommunication, video monitors & electronic test equipment
- Failure of capacitors
- De-rating of generators
- Malfunction of measuring instruments
- Overheating of motors

Proposed system

Fast acting hybrid filter solution at the main LT incomer to improve power factor and active filter for the harmonic mitigation.

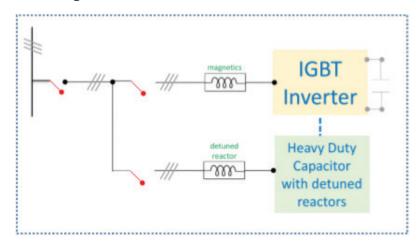


Figure 46: Operation of hybrid filter

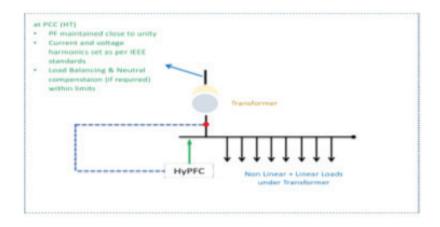


Figure 47: Connection diagram

Hybrid power factor correction system has following advantages over conventional system (detuned APFC/RTPFC)

- Instantaneous true PF compensation up to unity
- Step-less reactive compensation
- Responses in microseconds
- Leading/lagging both compensation
- Harmonics compensation as per IEEE-519 standards
- Runs on DG as well as grid
- Maintenance free

Figure 48: Reduction in kVA with & without operation of hybrid flter

Improvement in power factor leads to reduction in kVA demand thereby reduction in energy consumption and leads to saving in cost.

Cost Benefit Analysis

By installing new generation maximum demand controller cost saving potential of INR 5.00 Lakh can be achieved with an investment of INR 4.50 Lakh and a payback period of 11 months.

Table 52: Cost Benefit Analysis – Power factor improvement

Parameter	Values	UOM
Reduction in kVA	15	kVA
Operational hours	16	Hours/day
Operational days	330	Days
Annual savings	79,200	kVAh/annum
Annual monetary savings	5.00	INR Lakh/annum
Investment	4.50	INR Lakh
Simple payback period	11	Months

Table 53: Technology Supplier – Power factor improvement hybrid filter

Description	Details
Supplier Name	P2P Power solutions
Contact Person	Mr. Priyaranjan Sinha
Email Id	youdit@youdit.co.in
Phone No	+91-9811456950
Address	RPS Palms, Sec-88, Faridabad-121002

4.1.3.8. Installation of VFD on agitator motor

Baseline details

The ceramic unit has underground tanks fitted with agitator in each tank for continuously mixing to maintain uniformity and avoid settling of solid particle. Initially when the fresh charge comes from ball mill/blunger, loading on motor is in between 60 to 75%. After some time as the raw material become uniform then loading on motor decreases, the loading on agitator motors is in between 30% to 65%. Also speed of motors is higher than the required speed for most of the time during agitation process.

Implementation Details

A variable frequency drive (VFD) is a specific type of adjustable-speed drive which controls the speed of motor according to the requirement. The speed of the agitator motor can be reduced by installing variable frequency drive and operating speed can be programmed based on time. This will result in saving in power consumption to the extent of 15% in agitation section.

Cost Benefit Analysis

The expected energy savings to be achieved by installing VFD in agitator motor drive is 0.23 Lakh kWh annually. The annual monetary saving for this project is INR 1.60 Lakh, with an investment of INR 1.20 Lakh and a payback period of 9 months.

Table 54: Cost benefit analysis – VFD in agitator motor

Parameter	Values	UOM
Motor capacity	3	hp
Agitator quantity	10	Nos
Operational hours	24	Hours/day
Operational days	330	Days
Present power consumption in agitator	1,52,460	kWh/annum
Power saving	22,869	kWh/annum
Annual monetary savings	1.60	INR Lakh/annum
Investment	1.20	INR Lakh
Simple payback period	9	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Table 55: Technology Supplier details – VFD

Description	Details
	Supplier - 1
Supplier Name	Danfoss Industries Pvt Ltd
Contact Person	Mr Hiran Thakkar
Designation	Manager
Contact	Mobile: +91- 7940327341
Address	No. 703, 7th Floor, Kaivanna Complex, Opp. Bank of Baroda, Near Panchwati Cross Road, Ahmedabad-380015
	Supplier - 2
Supplier Name	Tirupati Automation
Contact Person	Mr. Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415, +91-8000682152
Address	Shiv Plaza-2, Shop No-14 & 15, Matel Road, At- Dhuva, Ta. Wankaner, Dist. Morbi (Gujarat)

4.1.3.9. Installation of on-off controller system in agitator motor

Baseline details

The ceramic unit has underground tanks fitted with agitator motor in each tank, for continuously mixing to maintain uniformity and avoid settling of solid particle. Initially when the fresh charge comes from ball mill/blunger, loading on motor is in between 60 to 75%. After some time as the raw material become uniform then loading on motor decreases, the loading on agitator motors is in between 30% to 65%. These motors operate for about 24 hours in a day.

Implementation Details

Installation of automatically ON – OFF control system on the agitator motors do not affect the uniformity (quality) of slurry. It results in saving in electricity consumption in agitator motors. This system automatically switches ON agitator motors for about 10 minutes and then switches OFF for about 5 minutes. This means that in one hour, agitator motors operate for about 40 minutes and remain switch off for about 20 minutes. This could result in approximately 30% saving in electricity consumption of agitator motors.

Cost Benefit Analysis

The expected energy savings to be achieved by installing on -off controller system is 0.46 Lakh kWh annually. The annual monetary saving for this project is INR 3.20 Lakh, with an investment of INR 0.50 Lakh and a payback period of 2 month.

Table 56: Cost Benefit analysis – On off controller system in agitation system

Parameter	Values	UOM
Motor capacity	3	hp
Agitator quantity	10	Nos
Operational hours	24	Hours/day
Operational days	330	Days
Present power consumption in agitator	1,52,460	kWh/annum
Power saving	45,738	kWh/annum
Annual monetary savings	3.20	INR Lakh/annum
Investment	0.50	INR Lakh
Simple payback period	2	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Table 57: Technology Supplier details – On-off controller system for agitator

Description	Details
Supplier Name	Tirupati Automation
Contact Person	Mr. Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415, +91-8000682152
Address	Shiv Plaza-2, Shop No-14 & 15, Matel Road, At- Dhuva, Ta. Wankaner, Dist. Morbi (Gujarat)

4.1.3.10. Installation of energy efficient motor in place of existing conventional motors in agitator system

Baseline details

The ceramic unit has underground tanks fitted with agitator motor in each tank, for continuously mixing to maintain uniformity and avoid settling of solid particle. Initially when the fresh charge comes from ball mill/blunger, loading on motor is in between 60 to 75%. After some time as the raw material become uniform then loading on motor decreases, the loading on agitator motors is in between 30% to 65%. This reduction in motor loading decreases the motor efficiency and thereby results in more electricity consumption. These motors operate for about 24 hours in a day.

Implementation Details

IE3 standard motors will improve motor operating efficiency as compared to old rewinded motors. IE3 motors have superior efficiency and can be operated from 50% to 100% since they have flat curve than conventional motors due to:

- Increasing the mass of rotor conductors/ conductivity.
- Precision air gaps to reduce current requirements.
- Improved winding and lamination design to minimize power consumption.

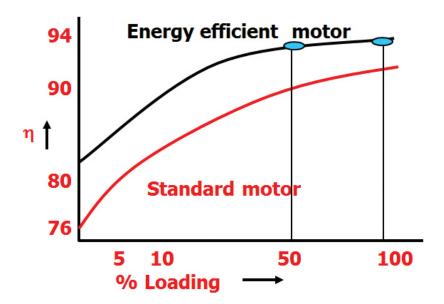


Figure 49: Percentage loading for Energy Efficient motors

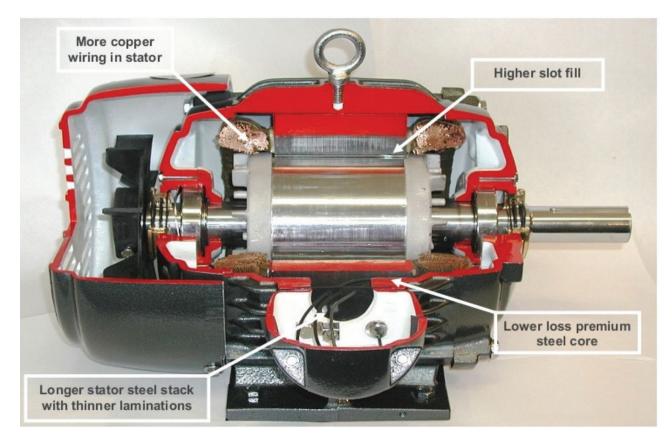


Figure 50: Energy Efficient Motors

Replacement of the existing standard efficiency motors by energy efficient motors will result in significant saving of electricity consumption in agitator motors.

Cost Benefit Analysis

The expected energy savings to be achieved by installing energy efficient motors is 11,718 kWh annually. The annual monetary saving for this project is INR 0.82 Lakh, with an investment of INR 1.25 Lakh and a payback period of 18 month.

Table 58: Cost Benefit analysis – Energy efficient motors in agitation system

Parameter	Values	Units
Motor capacity	3	hp
Agitator quantity	4	Nos
Existing Efficiency (Old motor)	80.00	%
EE motors Energy Efficiency(IE3)	86.70	%
Operational days	330	Days
Present power consumption in agitator	1,52,460	kWh/annum
Power saving	11,718	kWh/annum
Annual monetary savings	0.82	INR Lakh/annum

Parameter	Values	Units
Investment	1.25	INR Lakh
Simple payback period	18	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Table 59: Technology Supplier details – Energy efficient motor

Description	Details
	Supplier - 1
Name of Company	Rotomotive Drives
Contact Person	Mr Gagendra
Designation	Manager
Contact	Mobile: +91-9377511911
Address	223, Napa Talpad, Gana Borsad Road, Taluka Borsad, Anand, Gujarat -388560
	Supplier - 2
Name of Company	Siemens
Contact Person	Mr Vedavyas Nayak
Designation	Cluster head - Drives
Contact	Mobile: +91-9632077220
Address	Birla Aurora, Level 21, Plot No. 1080, Dr. Annie Besant Road, Worli, Mumbai – 400030

4.1.4. Case studies in renewable energy

4.1.4.1. Solar rooftop system

Baseline Scenario

Electricity cost constitutes 15 to 20% of total energy cost in a ceramic unit. As the ceramic units are spread across a large land area with broad sheds having significant roof areas, there is significant potential for the units to generate solar power for in-house applications through rooftop solar photovoltaic (PV) systems. Renewable energy is deemed to be the best substitute for conventional fossil fuel. The ceramic unit has enough rooftop area which can be utilized to install solar PV for self-generation of electricity rather than purchasing from grid. Few ceramic units in Thangadh cluster have installed rooftop solar systems up to 50 kWp and operating successfully.

The electricity generation potential at a specific location depends on the solar radiation received. The solar radiation received during each month throughout a year at Himatnagar is given below:

Parameters

Location

Latitude: - 23.55
Longitude: - 72.95

Direct Normal Irradiance

5 kWh/m²/day

Wind

4.1 m/sec

35%

Table 60: Site Specification – For Solar PV

The following graphs highlights solar irradiance:

Himatnagar, Gujarat, India

Humidity

Latitude : 23.55 Longitude : 72.95 Annual Average : 5.96 kWh/m²/day

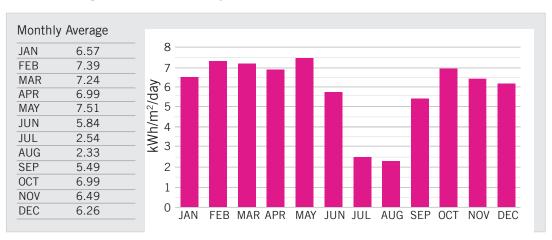


Figure 51: Solar Irradiance

w Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final

Proposed System

The ceramic units in Himatnagar has a significant potential for installing solar rooftop system. A typical 50 kWp solar rooftop system can generate around 0.80 Lakh units of electricity annually. The proposed system will be a grid-tied solar PV power unit consisting solar PV array, module mounting structure, power conditioning unit (PCU) consisting of maximum power point tracker (MPPT), inverter and controls & protections, interconnect cables, junction boxes, distribution boxes and switches. PV Array is mounted on a suitable structure. Grid-tied solar PV system is without battery and should be designed with necessary features to supplement the grid power during daytime. In grid-connected rooftop or small solar PV system, the DC power generated from solar PV panel is converted to AC power using power converter and is fed to the grid either of 33 kV/11 kV three phase lines or of 44oV/22oV three/single phase line, depending on the local technical and legal requirements.

These systems generate power during the daytime, which is utilized by powering captive loads and feeding excess power to the grid. In case the power generated is not sufficient, the captive loads are served by drawing power from the grid.

Net Metering Business Model – The net metering-based rooftop solar projects facilitate the self-consumption of electricity generated by the rooftop project and allow for feeding the surplus into the grid network of the distribution by the licensee. The type of ownership structure for installation of such net metering-based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. In a grid-connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback on the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yield.

A commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand. The features / requirements for grid-connected rooftop solar PV system are as follows:

Table 61: Features/requirements for Grid Connected Solar PV Systems (Rooftop)

S. No.	Features / Requirements	Values
1	Shadow free roof area required	10 sq. m or 100 sq. ft. per kWp
2	Roof suitable for Solar PV system	Concrete/ GI/ tin shed (Asbestos may not be suitable)
3	Orientation of the roof	South facing roof is most suitable. Installation may not be feasible beyond 5 deg slope.
4	Module installation	Modules are installed facing South. Inclination of modules should be equal closer to the latitude of the location for maximum energy generation.

S. No.	Features / Requirements	Values
5	Cost of the rooftop solar PV system	MNRE issues benchmark cost for GCRT Solar PV system and the cost for general category states for 2019-20 are as follows. This includes cost of the equipment, installation and O&M services for a period of 5 years. Above 1 kWp and up to 10 kWp: INR 54,000/ kWp Above 10 kWp and up to 100 kWp: INR 48,000/ kWp Above 100 kWp and up to 500 kWp: /INR 45,000/ kWp Based on discussions with a few project developers, average cost of the system (as per market conditions) is as follows: For 10 kWp system, INR 49,000/ kWp For 50 kWp system, INR 42,500/ kWp For 100 kWp system, INR 37,000/ kWp
6	Useful life of the system	25 years
7	Annual energy generation from Rooftop Solar PV system	18% CUF in 1st annum, i.e., 1,578 kWh/ kWp / annum o.7% degradation every annum for the useful life of the system. On an average, 1,452 kWh/ kWp/ annum would be generated over the useful life.

Merits

- PV panels provide clean & green energy. During electricity generation with PV panels, there is no harmful greenhouse gas emissions.
- ❖ Technology development in solar power industry is constantly advancing, which can result in lower installation costs in the future.
- PV panels have no mechanically moving parts, except in cases of sun-tracking mechanical bases; consequently, they have far less breakages or require less maintenance than other renewable energy systems (e.g. wind turbines).

Limitations

- The initial cost of purchasing a solar PV system is high, which includes paying for solar panels, inverter, batteries and wiring and for the installation.
- Although solar energy can be still collected during cloudy and rainy days, the efficiency of the system drops, which results in lower generation of energy.
- Installing a large PV system takes up a lot of space.

Cost Benefit Analysis

The expected savings by installation of 50 kWp solar rooftop is 0.80 LakhkWh annually. The annual monetary saving for this project is INR 5.60 Lakh, with an investment of INR 18.50 Lakh and a payback period of 40 months.

Table 62: Cost Benefit Analysis – Solar PV Systems

Parameters	Value	UOM
Proposed roof top solar installation	50	kWp
Annual units generation	1,600	kWh per kW/annum
Total energy generation	80,000	kWh/annum
Electricity cost	7	INR/kWh
Cost savings	5.60	INR Lakh/annum
Investment	18.50	INR Lakh
Simple payback period	40	Months

Table 63: Technology Supplier Details – Solar Rooftop System

Description	Details
	Supplier - 1
Name of Company	Raijin Solar Energy
Contact Person	Mr Jaydip Agrawat
Designation	Managing Director
Contact	Mobile: +91-9574511117
Address	909 to 911, Anand Mangal-3, Behind Kalyan Jewellers, Ambawadi, Ahmedabad, Gujarat 380006

Description	Details
	Supplier - 2
Name of Company	Mysun Solar
Contact Person	Mr Pravin
Designation	Manager
Contact	Mobile: +91-9890285988
Address	Unit No 816, 817 & 818, 8th Floor, Tower-1 Assotech Business Cresterra Plot No 22, Sector 135, Noida, Uttar Pradesh- 201301

4.1.5. New & innovative technologies

4.1.5.1. Solar-Wind hybrid system

Baseline Scenario

Renewable energy is deemed to be the best substitute for conventional fossil fuel. Implementation of renewable energy posts various challenges, such as capital cost and consistency of power output, of which the latter can be solved by the installation of a solarwind hybrid system. The unit has enough rooftop area which can be utilized to install a solarwind hybrid system that can harness solar energy and wind energy to generate electricity.

Proposed System

The solar-wind hybrid system is also known as solar mill. The solar mill generates:

- Daytime energy from the sun and wind.
- Day & night energy from the wind energy.
- Energy even on cloudy days.
- More energy on hot sunny days due to cooling effect on solar panels by wind.

Figure 52: Solar wind hybrid system

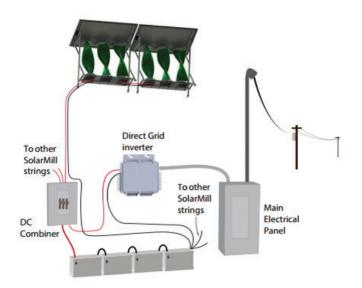


Figure 53: Hybrid mill connected to supply

It consists of three vertical axis wind turbines coupled to three permanent magnet generators. Automatic mechanical braking is provided once the wind speed goes beyond the cutoff speed. On-board smart electronics include dynamic Maximum Power Point Tracking (MPPT). It uses wind and solar resources on a 24/7/365 basis, allowing access to energy and very little interruption of services. The design life of solar mill is 25 years.

Specifications

The increase of renewable power per square foot of roof is obtained by combining two power sources. For a rooftop installation, combining solar and wind power is a complementary combination. For example, many locations are less windy in the middle of the day when the sun is at its peak and the wind picks up after dusk. Other advantages are solar module

providing protection for the wind portions of the mechanism from direct rain and hail and assisting with the direction of air into the turbines

Since this compact installation is designed for rooftops and urban atmosphere, savonous type of wind turbine is chosen for its low running speed and relative insensitivity to turbulence. Power generation begins at a wind speed of 5 kmph. Independent MPPT for both wind and solar is calibrated. Maximum power point tracking (MPPT) is an algorithm included in charge controllers used for extracting maximum available power. The power from both wind and solar generation is routed into a common 48V DC bus which has built-in charge control for a lead acid battery bank.

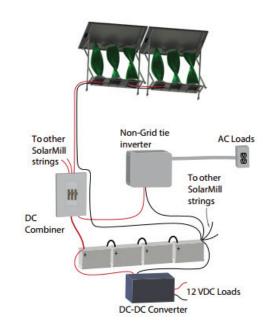


Figure 54: Hybrid mill connected to loads

Modes of Use

In grid-tied system, the bank of batteries is connected to one or more Direct Grid microinverters, which connect to the user's electrical panel. The inverters push power back to the

aw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Ou

grid efficiently when the batteries become fully charged.

In off-grid storage, the batteries can be used to supply power to electrical devices in off grid settings. This electrical energy can power DC powered devices through a voltage converter or can power AC devices through an inverter.

Merits

- Power generation during daytime as well as night-time.
- Reliable power generation even on cloudy days.
- ❖ A compact hybrid solar mill to meet a portion of the unit's load after detailed study with vendors.
- Power generation stats at 2-5 m/s and mechanical braking occur beyond 18 m/s.
- The power generation can be monitored online.

Limitations

Higher investment.

Cost Benefit Analysis

The expected savings in electrical energy to be achieved by installation of a 50 kWp Solar - Wind hybrid system is 1.09 LakhkWh units annually. The annual monetary saving for this project is INR 7.11 Lakh, with an investment of INR 50.00 Lakh and a payback period of 84 months.

Table 64: Cost Benefit Analysis – Solar Wind Hybrid Systems

Parameters	Value	UOM
Installed capacity of solar wind mill	50	kWp
Average generation	6.0	kWh
Area Required	30	m²
Annual operating days	365	Days
Electricity tariff	6.5	INR/kWh
Average annual energy saving on conservative basis	1,09,500	kWh
Annual cost savings	7.11	INR Lakh/ annum
Investment	50	INR Lakh
Simple payback Period	84	Months

Table 65: Technology Supplier Details – Solar-Wind Hybrid Systems

Description	Details
Supplier Name	Windstream Technologies
Contact Person	Mr. Bhaskar Sriram
Email Id	bhaskars@windstream-inc.com
Phone No	+91 99599 18782
Address	G2-SSH Pride, Plot 273, Road No-78, Jubilee Hills, Hyderabad 500096

4.1.5.2. CFD application for improving heat transfer in spray dryer

Baseline Scenario

Moisture which is added in the grinding process in the ball mill is removed in spray dryers. Hot flue gases at 550-600°C from heat source fired from lignite, Indonesian coal and biomass reduces the moisture from 35-40% in input slurry to 5-7% in output slurry. Improper design of spray dryer and/or improper mixing of the hot gas and materials results in excess fuel consumption in spray dryer. The fuel consumption in spray dryer can be optimized/reduced by conducting the Computational Fluid Dynamics (CFD) study and retrofitting the system as per the CFD study analysis.

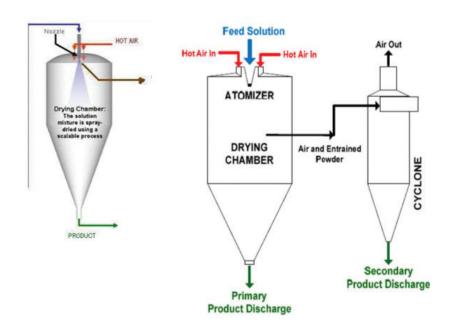


Figure 55: Spray Drying Process

Implementation Details

Computational fluid dynamics (CFD) is one of the branches of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows. Computers are used to perform the millions of calculations required to simulate the interaction of fluids and gases with the surfaces used in engineering. CFD analysis could be employed to pinpoint high pressure drop zones in ducts.

CFD predicts fluid flow with the complications of simultaneous flow of heat, mass transfer, phase change and chemical reaction, etc. using set of certain CFD software and calculations.

With the rapid advancement in computers, computational fluid dynamics is used across the world in all industries for validating designs, troubleshooting, maintenance and upgrading so that they operate safely and at peak efficiencies with optimum cost.

ody Preparation Tile Pressing Drying

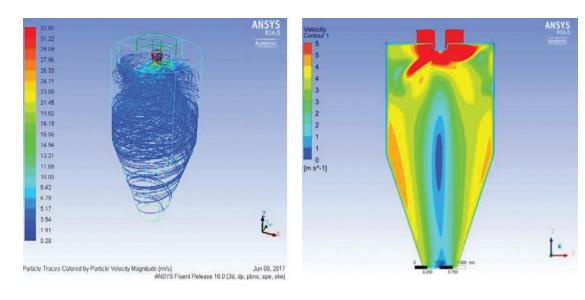


Figure 56: Particle flow pattern and velocity distribution inside the chamber

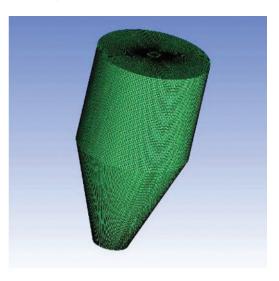
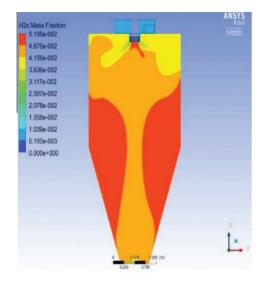



Figure 57: CFD Model of main drying chamber

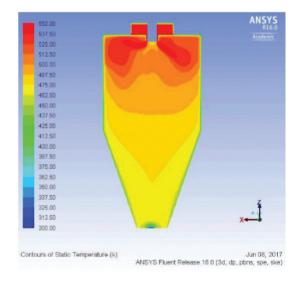


Figure 58: Contours of moister concentration and temperature distribution inside the chamber

aw Material Dosage Body F

Working Principle

The most fundamental consideration in CFD is building and analyzing a flow model. It includes building the model within a computer-aided design (CAD) package, creating and applying a suitable computational mesh and entering the flow boundary conditions, operating conditions and fluid materials properties. The software will provide us with images and data, which predict the performance of that design.

Benefits in Ceramic Units

- ❖ Particle distribution is very important for effective heat and mass transfer.
- With the help of CFD, modifications can be suggested to improve particle distributions inside the chamber.
- Uniform gas flow.
- Improved heat transfer will result in energy savings.

Cost Benefit Analysis

The expected energy savings to be achieved by conducting CFD study for spray dryer is 5,339 Lakh kCal annually. The annual monetary saving for this project is INR 6.00 Lakh, with an investment of INR 8.00 Lakh and a payback period of 16 months.

Table 66: Cost Benefit analysis – CFD for spray dryer

Parameter	Values	Units
Fuel (coal) saving	363	kg /day
GCV of fuel (coal)	4,500	kCal/kg
Total working days	330	days
Fuel cost	5	INR/kg
Annual monetary savings	6.00	INR Lakh/ annum
Investment	8.00	INR Lakh
Simple payback period	16	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Table 67: Technology supplier details – Computational fluid dynamics (CFD)

Description	Details
Name of Company	Mechwell Industries Limited
Contact Person	Mr Akshay Shah
Designation	Manager
Contact	Mobile: +91-8275016434
Address	7-A, Old Anijrwadi, Mazgaon, Mumbai : 400 010 Tel :- 91 - 22 - 66 200 300 Email : - mechwell@vsnl.com / mail@mechwell.com

4.1.5.3. Hydroxy gas combustion in kiln firing in roller kiln

Baseline Scenario

Ceramic tiles industries are high energy consuming industries mainly thermal energy. More than 35-40% of total cost is energy cost in ceramic tiles industries. Most energy consuming process is the firing process or kiln process. The primary energy use in ceramic manufacturing is for kiln. Natural gas is used for most drying and firing operations. Nearly 30% of the energy consumed is used for drying and over 60% of the energy consumed is used for firing.

Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones of kilns. Hydroxy Gas Generator (HHO) can be used to save 10-15% of fossil fuel consumption without altering the existing system.

Implementation Details

Hydroxy gas is the combination of hydrogen and oxygen gas produced from the electrolysis of water. HHO system is composed of HHO gas unit and hydroxy system combustion system (boiler, furnace, etc.). The water fuelization system converts the water into hydroxy gas and makes thermal energy. From the Hydroxy gas, the heat generation device will convert into water energy which has calorific value of 2.56 kCal/Litre.

The ceramic unit can have hydroxy mixed combustion system (min 5% of total energy) to mix with Natural gas in kiln firing and burn Hydroxy Gas with conventional fuel to achieve fuel savings. Hydroxy Gas Generator unit supplies Hydroxy Gas 24 hours into the combustion chamber of existing facility. The Hydroxy Gas is mixed with conventional fuel and burned together. This can result in saving of 5-10% in fuel consumption.

Figure 59: HHO Gas Generator

Cost Benefit Analysis

The expected energy savings to be achieved by installing HHO system is 10,334 Lakh kCal annually. The annual monetary saving for this project is INR 33.51 Lakh, with an investment of INR 80 Lakh and a payback period of 28 months.

Raw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing

Table 68: Cost benefit analysis – HHO system for kiln

Parameter	Value	UOM
Natural gas consumption before intervention	8,500	SCM/Day
Operational hours	24	Hours /Day
Operational days	350	Days/snnum
Natural gas consumption after implementation of intervention	8,160	SCM/day
Annual gas savings due to implementation of measure	1,11,720	SCM/snnum
Cost of natural gas	30	INR/SCM
Total thermal energy cost savings	33.51	INR Lakh/ annum
Total investment required to implement the project	80.00	INR Lakh
Simple payback period	28	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Table 69: Supplier details – HHO system for kiln

Description	Details
Name of Company	Kankyo Group
Email:	infor@kankyo.global
Contact number	+91-9150001111
Address	No.11, Ayyavu Street, Ayyavu colony, Amminijikarai, Chennai

4.1.5.4. Optimization of water consumption by installation of water softener unit

Baseline details

Water is used for slurry preparation and in tile polishing section in ceramic units. Batch timing and resource consumption (water, electricity and fuel) depends on the water quality. Poor quality of water increases the batch timing and resource consumption. Generally the TDS of bore well water is very high. Use of high TDS water for slurry preparation results in higher consumption of water & power per batch of slurry. As the moisture content in slurry increases, due to more TDS, it requires more time and higher coal consumption for drying in spray dryer in tiles manufacturing units. The high TDS of water can be controlled by installing softener unit, which will enable resource savings.

Bore well water is having TDS level of 1,200 to 1,500 ppm which can be improved by installing softener unit which may reduce TDS level to less than 500 ppm.

About the technology

Industrial water softener:

The correct balance of minerals of incoming water to industrial systems is essential to the proper operation and maintenance of expensive equipment. It is also imperative to provide a consistent finished product. Industrial water softeners remove excess minerals, such as calcium and magnesium, to a specified and monitored level to continue the industrial process. The process of industrial water purification and softening, takes water that is unfit for industrial use and turns it into water that is free of sediment and contaminants, with the correct pH balance.

Figure 60: Water softener unit

The system of water softening for industrial purposes requires the incoming water to travel through a porous resin bed. This resin has the appearance and consistency of tiny plastic beads. These fine beads have been constructed and treated so that each tiny bead is exceptionally porous. The surface area is also permanently chemically altered to be highly attractive to the offending minerals. The surface sites of the resin have an affinity for minerals that have an electron charge of positive two and higher, such as calcium and magnesium. Other minerals with a similar valence may also be removed. A complete analysis of the incoming water is essential to the proper operation of the water softening system.

Incoming water enters the water softener vessel that is filled with the resin bed. The velocity of the water slows, spreading over the wider surface area of the bed and travels through the

millions of tiny beads. During this process, the minerals in the water are attracted to the resin surface areas. The water then exits the resin bed – freed of the laden minerals with little significant hydraulic head pressure drop. The resin bed captures the hardness minerals in the water. However, as the surface area of each bed in the resin is occupied by minerals, the effectiveness of the water softener gradually declines. A complete industrial water softening system has to include equipment to regenerate these resin beds. Usually, there is a duplicate resin bed that can be engaged, so that the initial resin bed has time to refresh. After water is diverted to the second bed, the regeneration of the first bed can be commenced.

The alternative is to shut off the outflowing water during the regeneration process. This may be possible if softened water demand is limited to one or two shifts only.

The resin has a much higher affinity for calcium and magnesium ions, but it will 'give up' those when rinsed with water containing a very high concentration of sodium ions (i.e., very 'salty' water) and the sodium ions replace calcium and magnesium ions on the resin. Finally, the resin bed is flushed with water to remove excess salt before the bed is placed back into service.

Benefit

Expected benefits of using low TDS water for slurry preparation:

❖ Water saving - 5 to 10%

❖ Power saving – 2 to 3%

Fuel saving – 15 to 20% (in spray dryer)

Chemicals saving - 15 to 20%

Cost Benefit Analysis

The expected energy savings to be achieved by using soft water – TDS less than 400 ppm – is 14,685 kCal/annum and 6,600 kWh/annum. The annual energy saving for this project is INR 18.0 Lakh, with an investment of INR 40.00 Lakh and a payback period of 26 months.

Table 70: Cost benefit analysis – Improved water quality in ball mill

Parameter	Existing	New	UOM
TDS of water	1,200	400	ppm
Water used per batch	18	15.3	m³/batch
Electricity consumption per batch	141	137	kWh/batch
Total batches per day	5	5	No./day
Annual operating days	330	330	Days/annum
Electricity consumption per annum	2,32,650	2,26,050	kWh/annum

Parameter	Existing	New	UOM
Coal consumption in spray dryer	1,958	1,664	Tonnes/annum
Power cost	8	8	INR/kWh
Coal cost	6	6	INR/kg
Total annual energy saving*	18.	0	INR/annum
Investment	40.	0	INR Lakh
Simple payback period	26		Months

^{*} Only energy savings is considered. Chemical savings are not considered. Chemical savings will be in the range of 15 to 20%.

Table 71: Supplier details – Industrial water softener

Description	Details
Name of Company	Aqua Filsep Inc
Email	inquiry@aquafilsep.com
Contact	Tel :+91 79 26580047 Mobile : +91-9825048142
Address	A1/I, Chinubhai Tower, Ashram Road, Ahmedabad – 380 009

4.1.5.5. Installation of Energy Management System

Baseline details

The energy cost in a ceramic unit accounts for 25-30% of total production cost. In ceramic unit, kilns are the major source of fuel consumption. Natural gas is used mainly in kiln firing and dryer operations. Electrical energy is used for the operation of spray dryer, ball mills, compressor, agitators, cast section & kiln auxiliaries. Monitoring the energy use at various equipment will provide feedback and measurement of energy consumption, patterns, trends and will help in identifying opportunity areas in order to reduce energy usage and costs.

Hence for monitoring the consumption of natural gas and electrical energy, ceramic units can install an energy management system and can optimize the energy cost.

About the technology

Energy management system provides the means to controlling and reducing the energy consumption. Installation of energy management system at unit level will monitor the energy consumed by various machines. From this, the benchmark energy consumption can be set with respect to production for the machines. If an increase in energy consumption is noticed for any machine, then the reasons for the increased consumption can be diagnosed and proper remedial actions can be taken.

The energy management system involves metering, data collection, data analysis and interpretation of energy consumption. For measurement of electrical energy multiple energy meters to be installed at various sections like bill mall, slip preparation, cast house and compressor room. Online gas flow can be installed in kiln and dryer for measurement of natural gas consumption in the kiln. Energy management system communicates with multiple energy meters and online gas flow meter installed at site location.

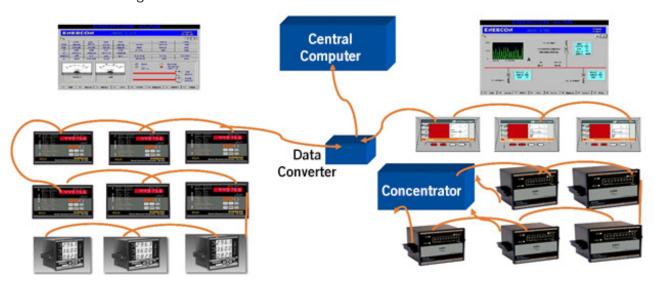


Figure 61: Components of Energy Management System

Preparation Tile Pressing Drying

Implementation of Energy Management System provides the following benefits:

- Identification and assessment of application and consumption and prioritizing in those areas identified as high consumers.
- ❖ Identification and prioritization of savings opportunities by comparison of economic variables such as initial investment required and the payback period.
- Defining the baseline energy consumption by comparing the energy performance of the unit before and after initiating the energy management system.
- Analyzing the trend of energy consumption using the system data and, analyze the performance of the unit in achieving the energy objectives and also establish future energy goals and programs.

**

Results:

- Reduced specific energy consumption in unit
- Reduced energy cost by 2-3% from present levels

Cost Benefit Analysis

The expected energy savings to be achieved by installing the energy management system is 12015 Lakh kCal & 2.18 Lakh kWh annually. The annual monetary saving for this project is INR 45.00 Lakh, with an investment of INR 12.00 Lakh and a payback period of 3 months.

Table 72: Cost benefit analysis – Energy Management System

Parameter	Value	UOM
Natural gas consumption before intervention	3,759,801	SCM /annum
Operational hours	24	Hours /day
Operational days	330	Days/annum
Natural gas consumption after implementation of intervention	3,684,605	SCM/annum
Annual gas savings due to implementation of measure	75,196	SCM/annum
Cost of natural gas	30	INR/SCM
Electrical energy (kWh) before intervention	10,944,390	kWh/annum
Electrical energy (kWh) after implementation	10,725,502	kWh/annum
Annual electrical energy savings due to implementation of measure	218,888	kWh/annum
Coal consumption in HAG before intervention	6,572,850	kg/annum
coal consumption in HAG after implementation	6,441,393	kg/annum
Annual coal consumption savings	1,31, 457	kg/annum

Parameter	Value	иом
Total annual monetary saving	45.00	INR Lakh/annum
Investment	12.00	INR Lakh
Simple payback period	3	Months

Table 73: Technology supplier details – Energy Management System

Description	Details
	Supplier – 1
Name of Company	Elmeasure India Pvt Ltd
Contact Person	Mr Akash
Designation	General Manager
Contact	Mobile: +918866098020
Address	Ahmedabad, Gujarat
	Supplier – 2
Name of Company	Smart Joules Pvt Ltd
Contact Person	Mr. Akshay Pandey
Designation	General Manager
Contact	Mobile: +919958768838
Address	B-98, Lower Ground Floor, Defence Colony, New Delhi, Delhi 110024

4.1.5.6. Insulation improvement in Hot air generator for spray dryer

Baseline details

The energy cost in a ceramic unit accounts for 25-30% of total production cost. In ceramic tile unit, spray dryer is second major source of fuel consumption after the roller kiln. Moisture which is added in the grinding process in the ball mill is removed in spray dryers. Hot flue gases at 550–600°C from hot air generator reduces the moisture from 35–40% in input slurry to 5–7% in output slurry.

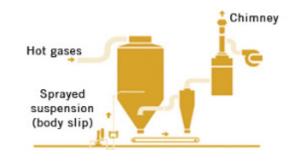


Figure 62: Spray dryer system

Spray dryer has two sections -hot air generator and drying chamber. Lignite and Indonesian coal are used mainly in HAG for generating the hot gases.

Radiation loss accounts for 15% to 20% of total energy loss. Poor surface insulation results in heat loss to surroundings and thereby increasing fuel consumption.

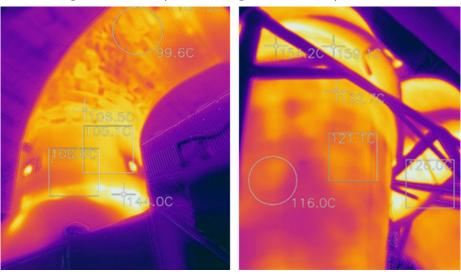


Figure 63: Thermal images of Hot gas generator duct connecting to cyclone separator

Implementation Details

This radiation loss can be reduced by replacing the damaged insulation or by application of new insulation thereby resulting in saving in fuel consumption in hot air generator

Results:

- Reduced specific energy consumption in unit
- Increased thermal efficiency of hot air generator

aw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Outpu

Cost Benefit Analysis

The expected energy savings to be achieved by insulation improvement in HAG is 1,808 Lakh kCal annually. The annual monetary saving for this project is INR 2.63 Lakh, with an investment of INR 4.60 Lakh and a payback period of 21 months.

Table 74: Cost benefit analysis – Insulation improvement in HAG for spray dryer

Parameter	Value	UOM
Diameter of cyclone separator	3	m
Length of cyclone separator	3.5	m
Surface area cyclone separator	33	m²
Diameter of connecting duct to cyclone separator	2	m
Length of connecting duct to cyclone separator	4	m
surface area connecting duct to cyclone separator	25.1	m²
Total surface area	58.1	m²
Average surface temperature before insulation	110	°C
Proposed average surface temperature after insulation	70	°C
Average coal loss due to high skin temperature before insulation	8.3	kg/h
Proposed average coal loss due to high skin temperature after insulation	3.2	kg/h
Average coal saving	5.1	kg/h
Annual operating hour	8,760	hrs/annum
Annual coal saving	45	Tonne/annum
Cost of coal	5,852	INR/Tonne
Total annual monetary saving	2.63	INR Lakh/annum
Investment	4.60	INR Lakh
Simple payback period	21	Months

Technology Supplier Details

Table 75: Technology supplier details – Insulation improvement in HAG

Description	Details
Name of Company	Cumi Morgan Advance Materials
Contact Person	Mr Alpesh Gupta
Designation	Director
Contact	Mobile: +91 9824013885

4.1.5.7. Excess air control system to maintain optimum air to fuel ratio in Hot air generator (HAG)

Baseline details

The energy cost in a ceramic unit accounts for 25-30% of total production cost. In ceramic tile unit, spray dryer is second major source of fuel consumption after the roller kiln. Moisture which is added in the grinding process in the ball mill is removed in spray dryers. Hot flue gases at 550–600°C from hot air generator reduces the moisture from 35–40% in input slurry to 5–7% in output slurry.

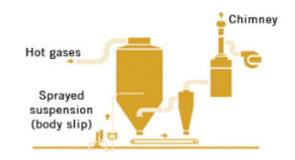


Figure 64: Spray dryer system

Spray dryer has two sections-hot air generator and drying chamber. Lignite and Indonesian coal are used mainly in HAG for generating the hot gases.

Excess air level in the combustion play a vital role in optimizing the fuel consumption and combustion efficiency of HAG firing. The excess air level is calculated based on the amount of oxygen in the exhaust flue gases.

Excess air = $(0_3)/(21-0_3)$ x 100%

Where O₂=% oxygen in flue gas

Excess air level in combustion air is to be maintained at optimum level as too much of excess air results in excessive heat loss in exhaust flue gas and maintaining too little excess air results in incomplete combustion and formation of carbon monoxide in flue gases and thus reducing the heat content in the flue gas. If fuel is fired with too much of excess air, this results in formation of excess flue gases, taking away the heat produced from the combustion and increasing the fuel consumption.

Implementation Details

A PID controller, if installed, can measure the oxygen levels in the flue gases at the exit of the HAG and based on that the combustion air flow from FD blower/fan will be regulated. Subsequently, proper temperature and optimum excess air for combustion can be attained in the HAG.

In air flow control system, an O_2 sensor is to be installed in exhaust fuel gas and VFD on combustion air fan. The sensor measures the O_2 & provides the feedback/input to PID controller. The PID controller provide input to the combustion blower (FD fan) VFD to control the speed and thereby control the volume of air to be required for complete combustion with optimum excess air.

Results:

- Reduced specific energy consumption in unit
- Increased thermal efficiency of Hot air generator

Cost Benefit Analysis

The expected energy savings to be achieved by by optimizing the excess air in HAG is 32,644 Lakh kCal annually. The annual monetary saving for this project is INR 47.50 Lakh, with an investment of INR 20.00 Lakh and a payback period of 5 months.

Table 76: Cost benefit analysis – Excess air control system in HAG

Parameter	Value	UOM
Oxygen level in flue gas just before firing zone before intervention	14.00	%
Excess air percentage in flue gas before intervention	200	%
Proposed Oxygen level in flue gas just before firing zone after implementation	8	%
Proposed excess air percentage in flue gas	61.5	%
Coal consumption before intervention	977.5	kg/hr
Proposed coal consumption after implementation	842.2	kg/hr
Saving in specific fuel consumption	0.14	Tonne/hr
Operational hours	24	Hours /day
Operational days	300	Days/annum
Annual coal consumption savings	812	Tonne/annum
Cost of coal	5,852	INR/Tonne
Total annual monetary saving	47.5	INR Lakh/annum
Investment	20	INR Lakh
Simple payback period	5	Months

Technology Supplier Details

Table 77: Technology supplier details – Excess air control system

Description	Details
	Supplier – 1
Name of Company	Wesman Thermal Engineering
Contact Person	Mr Tushar Shah
Designation	General Manager
Contact	Mobile: +91 9879206992
	Supplier – 2
Name of the company	Tirupati Automation, Morbi
Contact Person	Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415,+91-8000682152
Address	Ta.Wankaner, Dist. Morbi (Gujarat)

4.2. Case studies for pottery ware manufacturing units

4.2.1. Case studies in Kiln

4.2.1.1. Waste heat recovery in tunnel kiln

Baseline details

The ceramic unit has installed a tunnel kiln of 4 TPD capacity for firing moulds. The open flame tunnel kiln is a continuous type kiln, wherein the raw product is fed at one side and on the other side the finished product is taken out. The raw product undergoes firing and cooling cycles, as it moves from the front end to the back end of the kiln. Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones of the kilns. There are three zones in tunnel kiln – preheating zone, firing zone & cooling zone. The temperature of the combustion air plays an important role in increasing the thermal efficiency of kiln. Exhaust heat is released from tunnel kiln by two ways: the first is flue gas released at a temperature of around 200-220°C and the second is hot air from final cooling zone at a temperature of around 120°C. At present, exhaust gas from tunnel kiln is released to atmosphere and combustion air is used at an ambient temperature.

There is a potential to reduce the fuel consumption in tunnel kiln by preheating combustion air. Using the hot air from final cooling zone as a combustion air in tunnel kiln will lead to reduction in fuel consumption.

Implementation Details

Hot air which is exhausted from the final cooling zone of tunnel kiln at a temperature of around 120°C, can be used directly as a combustion air in tunnel kiln. This will increase the thermal efficiency of firing and lead to savings of about 2 to 3% on total natural gas consumption in tunnel kiln.

Results:

- Reduced specific energy consumption
- Increased thermal efficiency
- Reduced fuel (natural gas) costs by 2-3%

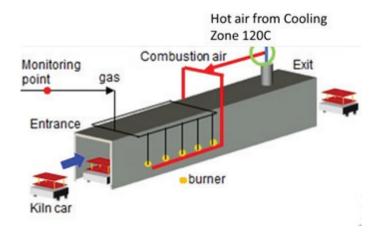


Figure 65: Implementation of WHR system in kiln – Use of hot air as combustion air

Cost Benefit Analysis

The expected energy savings to be achieved by using hot air as combustion air in tunnel kiln is 564 Lakh kCal annually. The annual monetary saving for this project would be INR 1.88 Lakh, with an investment of INR 2 Lakh and a payback period of 13 months.

Table 78: Cost benefit analysis – Waste heat recovery

Parameter	Value	UOM
Production	2.5	Tonne/day
Natural gas consumption before installation of WHR system	850	SCM/day
Inlet combustion air temperature (before)	40	°C
Inlet combustion air temperature (after installation of WHR system)	120	°С
Natural gas consumption after installation of WHR system	831	SCM/day
Operational hours	24	Hours/day
Operational days	330	Days/annum
Saving in natural gas consumption	6,270	SCM/ annum
Cost of natural gas	30	INR/SCM
Annual monetary saving	1.89	INR Lakh/annum
Investment	2.00	INR Lakh
Simple payback period	13	Months

Replication Potential

Implementation can be done in all other units where similar kilns are used for production. However, periodic monitoring and measurement of kiln excess air level in flue gas is essential.

Technology Supplier Detail:

Table 79: Technology Supplier Details – Waste Heat Recovery in kiln

Description	Details
Name of Company	Neptune Industries Pvt Ltd
Contact Person	Mr Chandresh
Designation	General Manager
Contact	Mobile: +91-9879206992
Address	VT Industrial Park, Ahmedabad Mehsana Highway, Jagudan, Mehsana 382710 (Gujarat) INDIA.

4.2.1.2. Energy efficient coating inside kiln to reduce the radiation losses in kiln and reduce fuel consumption

Baseline details

Maximum efficiency of the kiln is in the range of 30% to 40% and remaining 60% to 70% are losses from the kiln. Radiation losses accounts for 15% to 20% of total energy loss. In a kiln, the surface temperature at firing zone is in the range of 80 to 100°C. Minimizing the radiation loss from the kiln surface will result in reducing the fuel consumption.

The figure shows the various zones in kiln, the surface temperature recorded at various zone is indicated in below table.

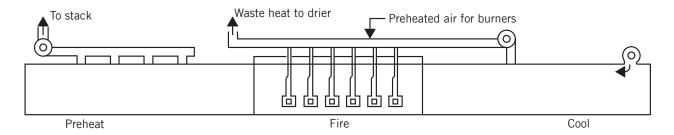


Figure 66: Various Zones in Kiln

Table 80: Zone wise average surface temperature in Kiln

Zone	Left wall Avg temp (°C)	Right wall Avg temp (°C)
Pre-heating	57	58
Firing	83	94
Cooling Zone	72	62

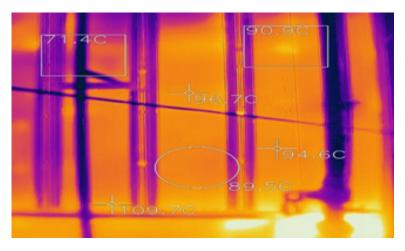


Figure 67: Surface temperature at firing zone in kiln

ndy Preparation Tile Pressing

In order to reduce the radiation losses from kiln surface, the ceramic unit have applied energy efficient coating inside the kiln at firing zone and preheating zone. This has resulted in reduction in radiation losses and fuel consumption.

Implementation Details

The energy efficient coating is most suitable for ceramic kiln. It is applied in the kiln on bricks as well as on the exterior of the kiln. The coating is applied in multiple layers and allowed to dry. The coating can withstand temperature up to 1,500°C. This will reduce the kiln surface temperature by 10 to 15°C.

Table 81: Zone wise temperature after applying energy efficient coating in kiln

S.no	Before	After (Expected)
1	Preheating: 58°C	Preheating: 45-50°C
2	Firing Zone: 90°C.	Firing zone: 75-82°C

Results:

- Saving of up to 2 to 5% in fuel consumption
- Life of coating would be 4-5 years
- Life of ceramic fibre and refractory bricks will increase resulting in indirect saving

Cost Benefit Analysis

The expected energy savings to be achieved by use of energy efficient coating is 757 Lakh kCal annually. The annual monetary saving for this project is INR 2.52 Lakh, with an investment of INR 3.00 Lakh and a payback period of 14 months.

Table 82: Cost benefit analysis – Energy Efficient coatings in kiln

Particular	Value	UOM
Production	2.50	Tonne/day
Natural gas consumption (before)	850	SCM/day
Natural gas consumption (after)	824.5	SCM/day
Operational days	330	Days
Savings in natural gas consumption	8,415	SCM/annum
Cost of natural gas	30	INR/SCM
Annual monetary savings	2.52	INR Lakh/ annum

Particular	Value	UOM
Investment (for firing & preheating zone coating area of 1,000 sq ft)	3.00	INR Lakh
Simple payback period	14	Months

Technology Supplier Details

Table 83: Technology Supplier Details – Energy efficient coatings in kiln

Description	Details
	Supplier-1
Name of Company	Innovative Surface Coating Technology, Nagpur
Contact Person	Mr. Nikhilesh R
Designation	Co-Founder
Contact	Mobile: +91-8788384913
	Supplier 2
Name of Company	HIR Industries, Himatngar, Gujarat
Contact Person	Mr. David Patel
Designation	Director
Contact	Mobile: +91-9099021334

4.2.1.3. Low thermal mass for reduction of kiln car losses in tunnel kiln

Baseline details

The unit has installed a tunnel kiln of 4TPD capacity for firing crockery moulds. The open flame tunnel kiln is a continuous type kiln, wherein the raw product is fed at one side and on the other side the finished product is taken out. The raw product undergoes firing and cooling cycles, as it moves from the front end to the back end of the kiln. The material movement through the tunnel kiln is by kiln cars, run on rails. The kiln cars are like train bogies designed to hold the products. Natural gas is used as a fuel in tunnel kiln. The kiln cars are constructed with refractory and insulating bricks. Due to high thermal mass, kiln cars consume considerable amount of heat energy supplied to the kiln.

Figure 68: Existing high thermal mass refractory in kiln car

Implementation Details

The weight reduction of the kiln cars gives a significant amount of energy savings in tunnel kiln. Low thermal mass materials (LTM) are now being used for kiln car construction, which reduces the weight of the kiln car considerably. Weight of car furniture was reduced from 465 kg per car to 358 kg per car (23% weight reduction). The innovative refractory insulation is highly efficient and extremely lightweight. Due to low density and low thermal mass conductivity results in lower heat absorption and thus energy savings on every firing.

Figure 69: Low thermal mass in Kiln car

Results:

- Reduced specific energy consumption in tunnel kiln
- Increased thermal efficiency
- Reduced fuel (natural gas) costs by 10-15%
- The material is free flow and light weight, easy to install and handle
- Reduced construction and maintenance cost/extended maintenance intervals

Cost Benefit Analysis

The expected energy savings to be achieved by use of low thermal mass in kiln car is 1,901 Lakh kCal annually. The annual monetary saving for this project is INR 6.34 Lakh, with an investment of INR 7.50 Lakh and a payback period of 14 months.

Table 84: Cost benefit analysis – Low thermal mass in kiln car

Particular	Value	UOM
Production	2.50	Tonne/day
No of kiln cars	25	Quantity
Natural gas consumption (before)	850	SCM/day
Natural gas consumption (after)	756	SCM/day
Operational days	330	Days
Savings in natural gas consumption	21,120	SCM/annum
Cost of natural gas	30	INR/SCM
Annual monetary savings	6.34	INR Lakh/annum
Investment (for firing & preheating zone coating area of 1,000 sq ft)	7.50	INR Lakh
Simple payback period	14	Months

w Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing Final Output

Replication Potential

Low thermal mass in kiln car can be replicated in all the pottery ware ceramic units in the cluster. It is advised to take proper care regarding the strength of the kiln car during the redesigning. Implementation of the technology can be done in one kiln car and later replicated the other kiln cars based on the results.

Technology Supplier Details

Table 85: Technology supplier details – Low thermal mass in kiln car

Description	Details
Name of Company	Interkiln Advanced Technical LLP, Ahmedabad
Contact Person	Mr. Kushang Sanghavi
Designation	Managing Partner
Contact	Mobile: +91-9998980044

Cluster Level Reference

1. Details of the project: Morbi

Table 86: Low thermal mass – Morbi Cluster Reference

Description	Details
Name of the company	Shree Neelkanth Sanitaryware
Person to be contacted	Mr Kantibhai Patel
Designation	Director
Contact number	9925259179
Email – ID	info@sorona.com
Address for communication	N.H8, Opp. Dariyalal Resort, Morbi.

2. Details of the project: Thangadh

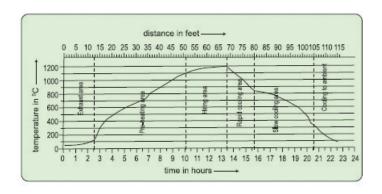
Table 87: Low thermal mass – Thangadh Cluster Reference

Description	Details
Name of the company	Anchor Sanitaryware
Person to be contacted	Mr Dushyant Sompura
Designation	Director
Contact number	+91-9825077447

3. Details of the project: Naroda

Table 88: Low thermal mass – Naroda Cluster Reference

Description	Details
Name of the company	Shiva Shakti Ceramics
Person to be contacted	Mr Dinesh Patel
Designation	Director
Contact number	+91-9879057081
Address for communication	Plot No.611,Ph-4,GIDC Naroda, Ahmedabad



4.2.1.4. Improvement of insulation in kiln to reduce radiation losses

Baseline details

The unit has installed a tunnel kiln of 4 TPD for firing crockery moulds. Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones of kilns. Kiln has three zones – preheating zone, firing zone & cooling zone. Firing cycle of the typical kiln is as follows

The kiln firing is done in two stages:

- 1) Preheating zone (500-750°C).
- 2) Firing zone (1,100-1,250°C).

After firing, tiles are cooled in two zones:

- 1) Rapid cooling zone (600-900°C).
- 2) Cooling zone (200-500°C).

Figure 70: Firing Cycle

Maximum efficiency of the Kiln is in the range of 30% to 40% and remaining 60% to 70% are losses from the kiln. Radiation losses accounts for 15% to 20% of total energy loss in a kiln.

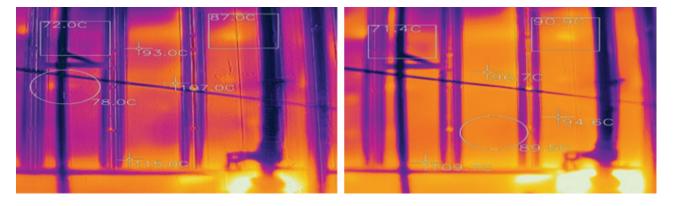


Figure 71: Thermal Image of Kiln

Implementation Details

This radiation loss can be reduced by replacing the damaged insulation and improving the existing insulation of the kiln. Insulation improvement leads to saving in fuel consumption in kiln.

eparation Tile Pressing Drying

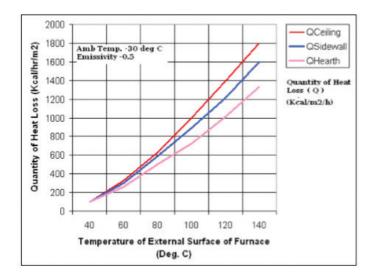


Figure 72: Quantity of Heat loss from Surface vs temperature

Results:

- Reduced specific energy consumption in kiln
- Increased thermal efficiency

Cost Benefit Analysis

The expected energy savings by replacing the damaged insulation with new is 757 Lakh kCal annually. The annual monetary saving for this project is INR 2.52 Lakh, with an investment of INR 4.50 Lakh and a payback period of 22 months.

Table 89: Cost benefit analysis – Kiln insulation Improvement in pottery ware unit

Particular	Value	NOM
Production	2.5	Tonne/day
Natural gas consumption before intervention	850	SCM/day
Operational hours	24	Hours/day
Operational days	330	Days/annum
Natural gas consumption after implementation of Intervention	824.5	SCM/day
Annual gas savings due to implementation of measure	8,415	SCM/annum
Cost of natural gas	30	INR/SCM
Annual monetary saving	2.52	INR Lakh/annum
Investment	4.50	INR Lakh
Simple payback period	22	Months

Replication Potential

Implementation can be done in all other units where a similar kiln is used for production. However, periodic monitoring and measurement of the kiln outside surface temperature is essential.

Technology Supplier

Table 90: Technology supplier details – Kiln insulation

Description	Details
Name of Company	Cumi Morgan Advance Materials
Contact Person	Mr Alpesh Gupta
Designation	Director
Contact	Mobile: +91 9824013885

4.2.1.5. Excess air control system to maintain optimum air to fuel ratio in kiln

Baseline details

Kiln performance is directly related to the temperature maintained at various zones & thermal efficiency of kiln. Excess air level in the combustion play a vital role in optimizing the fuel consumption and combustion efficiency of kiln firing. The excess air level is calculated based on the amount of oxygen in the exhaust flue gases.

Excess air = $(0_{3})/(21-0_{3})$ x 100%

Where O_2 =% oxygen in flue gas

Excess air level in combustion air to be maintained at optimum level as too much of excess level results in excessive heat loss in exhaust flue gas and maintaining little excess air results in incomplete combustion and formation of carbon monoxide in flue gases. One of the causes of high excess air is improper or outdated control system in burner firing.

UOM Parameter Value At kiln Exhaust At Kiln Firing 8 % 0, 17.3 CO **PPM** 65 131 CO₂ 2.4 6.1 % Excess air 61.54 % 467

Table 91: Flue gas analysis & excess air in one of the kiln

Implementation Details

It is recommended to maintain $\%O_2$ in flue gas in the range of 3-5%. For maintaining the optimum excess air level and air to fuel ratio, a PID based air and gas flow control system is to be installed in burner firing circuit.

In air flow control system, an O_2 sensor is to be installed in exhaust fuel gas and VFD on combustion air fan. The sensor senses the O_2 & provides the feedback/input to PID controller. The PID controller provide input to the combustion air fan VFD to control the speed and thereby control the volume of air to be required for complete combustion with optimum excess air.

¹⁴ Case Study – Cleaner Production in Ceramic Sector A strategy for Pollution Prevention prepared by Gujarat Cleaner Production Centre (Established by Industries & Mines Department, Government of Gujarat) March 2016

Results:

- Reduced specific energy consumption in kiln
- Increased thermal efficiency
- Reduced fuel (natural gas) costs by 10%

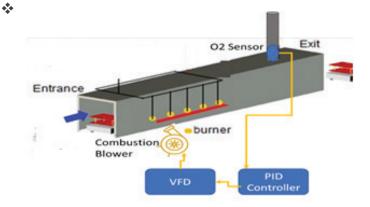


Figure 73: PID & VFD based excess air control system

Cost Benefit Analysis

In Naroda ceramic cluster, as the majority of the units are crockery units, the fuel consumption of the kiln is in the range of 850–1,300 SCM/day. The expected energy savings to be achieved by optimizing the excess air is 505 Lakh kCal annually. The annual monetary saving for this project is INR 1.68 Lakh, with an investment of INR 4.00 Lakh and a payback period of 29 months.

Table 92: Cost benefit analysis – Excess air control system in kiln in pottery ware unit

Parameter	Value	UOM
Production	2.5	Tonne/day
Natural gas consumption before intervention	850	SCM/day
Operational hours	24	Hours /day
Operational days	330	Days/annum
Natural gas consumption after implementation of intervention	833	SCM/day
Annual gas savings due to implementation of measure	5,610	SCM/annum
Cost of natural gas	30	INR/SCM
Annual monetary saving	1.68	INR Lakh/annum
Investment	4.00	INR Lakh
Simple payback period	29	Months

Replication Potential

Implementation can be replicated in all the kilns.

Technology Supplier

Table 93: Technology supplier details – Excess air control system in kiln

Description	Details
Name of Company	Wesman Thermal Engineering
Contact Person	Mr Tushar Shah
Designation	General Manager
Contact	Mobile: +91-9879206992

4.2.2. Case studies in Raw Material Blending

4.2.2.1. Reduction in ball mill power by installation of VFD on ball mill drive

Baseline details

The unit has installed a ball mill for grinding of raw materials. Ball mill is a batch type grinding process and used in all types of ceramic units. As per the process requirement, motor should run at full speed during the start of batch and after a particular time period, it should rotate at lower speed. Existing unit has no control system installed and operates directly on starter.

Implementation Details

A VFD is a system for controlling the rotational speed of an alternating current (AC) electric motor by controlling the frequency of the electrical power supplied to the motor. A variable frequency drive is a specific type of adjustable-speed drive which controls the speed of motor according to the requirement. The speed of the motor can be reduced by installing variable frequency drive on ball mill motor and operating speed can be programmed based on time. This will result in saving in power consumption to the extent of 15% in ball mills and blunger. This concept is applicable to glaze preparation ball mill in glaze section also. The project is successfully implemented in few ceramic units.

Results:

- Reduced specific energy consumption
- Reduction in electricity consumption in grinding process by 15%

Cost Benefit Analysis

In Naroda ceramic cluster, as majority of the units are crockery units, the maximum capacity of ball mill drive is 15 hp. The expected energy savings to be achieved by installing VFD in ball mill drive is 8,168 kWh annually. The annual monetary saving for this project is INR 0.57 Lakh, with an investment of INR 0.60 Lakh and a payback period of 13 months.

Table 94: Cost benefit analysis – VFD in ball mil in pottery ware unit

Parameter	Values	UOM
Capacity of ball mill	2	TPD
Ball mill motor capacity	15	hp
Mill charge per day	6	TPD
Power consumption	11	kW
Operational hours	15	hrs/day

Parameter	Values	UOM
Operational days	330	Days/annum
Ball mill annual energy consumption (before)	54,450	kWh/annum
Ball mill annual energy consumption after installation of VFD and optimizing the speed (15% savings)	46,282	kWh/annum
Annual energy savings	8168	kWh/annum
Annual monetary savings	0.57	INR Lakh/annum
Investment for VFD	0.60	INR Lakh
Simple Payback Period	12	Months

Replication Potential

The project can be implemented in all other units where a similar kind of ball mill is used. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 95: Technology Supplier details for VFD

Description	Details
Name of Company	Danfoss Industries Pvt Ltd
Contact Person	Mr Hiran Thakkar
Designation	Manager
Contact	Mobile: +91-7940327341

4.2.2. High speed blunger in place of ball mill for raw material grinding

Baseline details

In ceramic product manufacturing process, ceramic body preparation is one of the important processes. This process includes mixing of raw material with water to produce slurry. Most of the units in the cluster use ball mills for this operation ranging 2 MT to 5 MT capacity. Generally, ball mills will consume more time in loading and unloading as material is to be fed from small opening at the top. This is turn requires more manpower. It also requires grinding media for the operation, which will consume half of the space, so less productivity is achieved when compared to blunger technology.

The starting torque of ball mill motor is high due to uneven starting load, which consumes more power than the normal operation.

Figure 74: Conventional Ball Mill system

Implementation Details

Blunger is a machine which can rapidly blunge raw material without changing non plastic raw material structure using stator rotor mechanism. The turbo blunger is a heavy-duty blunger used for rapid preparation of slip, achieving an 80% reduction in the blunging time compared to normal propeller-type dissolvers. It is operated by means of a special rotor fixed to the bottom of the tank, which propels the material against a ring of fixed paddles (1st phase). An auxiliary impeller, available on request, is fixed at a point halfway up in the tank for the blending of material in powder form (quartz, feldspar) with the slip (2nd phase). The average dissolving time for raw or already treated clay, including loading and unloading operations, is approx. 2 hours for a liquid with a specific weight of 1.4 kg/m³. The average duration of the 2nd phase is 1 hour for a liquid with a specific weight of 1.8 kg/m³. Due to less cycle time (2 to 2.5 hrs) as compare to ball mill and lees weight, energy saving is achieved.

All parts involved in the dissolving process (rotor, fixed paddles, base of tank) are constructed in special steel of high wear resistance and easy to replace. All heavy-duty blungers are furthermore provided with a trap for collection of stones, which are periodically removed.

dy Preparation Tile Pressing Drying

Maintenance is extremely simple and reduced to a minimum.

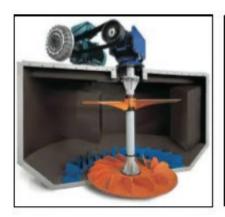


Figure 75: High Speed Turbo Blunger

Cost Benefit Analysis

The expected energy savings to be achieved by use of high speed blunger is 0.99 Lakh kWh annually. The annual monetary saving for this project is INR 6.45 Lakh, with an investment of INR 12.00 Lakh and a payback period of 23 months.

Table 96: Cost benefit analysis – High speed blunger

Parameter	А	В	UOM
	Ball mill	High speed blunger	
Charge Production	24	24	TPD
Capacity	6	5	MT
No of ball mills/blunger	2	2	Nos
Motor capacity	40	20	hp
Power consumption	23.8	14	kW
Operational hours for one charging	5	3	hrs/batch
Power consumed in 720 MT charges per month	14,323	6,048	kWh/month
Total power consumption per annum	1,71,876	72,576	kWh/annum
Electricity cost per annum	11.17	4.71	INR Lakh
Annual monetary saving		6.45	INR Lakh/annum
Investment		12.00	INR Lakh
Simple payback period		23	Months

Replication Potential

The project can be implemented in all the ceramic units.

Technology Supplier Details

Table 97: Technology supplier details – High Speed Blunger Technology

Description	Details
Name of Company	Dynovo Global Solutions Pvt Ltd, Mumbai
Contact Person	Mr. Jatan Shah
Designation	Managing Partner
Contact	Mobile: +91-9699817245
Address	203, Crystal Tower, 75 Gundavali Road No. 3, Off, Sir Mathuradas Vasanji Rd andheri East, Mumbai, Maharashtra 400069

4.2.2.3. High alumina media in glaze ball mill in place of natural stone/pebble

Baseline details

Ball mills are used for raw material and glaze grinding. The grinding of the material takes place due to the impact of the balls inside the ball mill. Most of the units in the cluster use natural stone as a media for grinding. Generally, these media are mined or naturally available stoned pebbles and are very irregular in shape and size. Such non-uniform grinding media take higher time for grinding and generate higher residue.

Figure 76: Mined stone pebbles

Figure 77: High alumina balls

Implementation Details

As compared with natural pebbles grinding media, the alumina grinding balls have better performance in terms of wear resistance, uniform size, high density and high mechanical strength. The high density and ultra-hardness of the alumina grinding ball enable increased loading of ball mill.

The alumina grinding ball is compact and uniform in shape, increasing the colliding

probability and grinding efficient. The alumina grinding ball can help in less contamination to the raw material and keep the chemical composition stabilized. Thus, the alumina grinding ball is a better option for glaze grinding that ensures quality of production.

Other benefits of using alumina balls is wear & tear of balls which is about 0.2%, is very less as compared to natural stone/pebble, which is about 2.0%.

Cost Benefit Analysis

The expected energy savings to be achieved by use of high alumina balls in place of stone/pebble is 0.375 Lakh kWh annually. The annual monetary saving for this project is INR 2.52 Lakh, with an investment of INR 5.00 Lakh and a payback period of 23 months.

Table 98: Cost benefit analysis – High alumina ball for grinding in ball mill

Parameters	Natural Media	High Alumina Media	Units
Electrical motor capacity*	15	15	hp

aw Material Dosage Body Preparation

ion

le Pressing

Orying

Glazin

Printing

•••••

Parameters	Natural Media	High Alumina Media	Units
Grinding hour for one charge	21	11	Hrs
Power consumed per one charge	234.4	122.7	kWh
Total charge per month	28	28	
Total power consumption per month	6,562	3,437	kWh
Cost of power per unit	7	7	INR/kWh
Cost of power consumption per month	0.45	0.24	INR Lakh
Monetary savings annum	2.52		INR Lakh/annum
Investment	5.00		INR Lakh
Simple payback period	24		Months

^{*} Considering ball mill size of 6 FT X 6 FT with material load of 2,000 kg

Replication Potential

It can be replicated in all ball mills operating with natural stone/pebble as grinding media.

Technology Supplier Details

Table 99: Technology Supplier Details – High alumina balls

Description	Details
Name of Company	Parishram Enterprise, Thangadh
Contact Person	Mr. Vinu Bhai
Designation	Managing Partner
Contact	Mobile: +91-98253 75834

4.2.3. Case studies in Utilities

4.2.3.1. Retrofit of energy efficient ceiling fans in place of conventional fans.

Unit: M/s Eros Sanitary, Shobheshwar Road, Morbi.

Baseline Details

In cast house, mould slow drying process is an essential component of sanitaryware production. The moulds drying process takes a minimum of 20-22 hours, depending on the atmospheric conditions. The moulds are kept in storage area and are dried by air from the ceiling fans. There are close to 500 ceiling fans installed for drying purpose. The drying process leads to loss of moisture in the moulds/casting and the process has to be slow, otherwise cracks will develop in the casting. After drying, the moisture content is 1.5% to 0.5%. During this process, the ware loses its weight and shrinks in size.

Implementation Details

The BLDC Technology or Brushless DC Motor: A BLDC fan takes in AC voltage and internally converts it into DC using SMPS (switch mode power supply). The main difference between BLDC and ordinary DC fans is the commutation method. A commutation is basically the technique of changing the direction of current in the motor for the rotational movement. In a BLDC motor, as there are no brushes, so the commutation is done by the driving algorithm in the electronics. The main advantage is that over a period, due to mechanical contact in a brushed motor, the commutators can undergo wear and tear. This thing is eliminated in BLDC Motor, making the motor more rugged for long-term use and using less energy for rotation due to no mechanical contact. The expected electrical energy reduction is approximately 60% from the actual consumption. The fans are provided with timer-based remote control. This feature can be utilized for auto switching off the fan after the required process time.

Results:

- Reduced specific energy consumption
- Reduced electrical bill costs by 60%
- Increased production

Cost Benefit Analysis

The expected energy savings to be achieved by replacement of existing ordinary fans with energy efficient BLDC fans is 0.165 Lakh kWh annually. The annual monetary saving for this project is INR 1.15 Lakh, with an investment of INR 1.25 Lakh and a payback period of 16 months.

Table 100: Cost benefit analysis – Energy efficient ceiling fans

Parameters	Value	UOM
Quantity of conventional Fans	50	Units
Operating hours	20	Hrs
Energy consumption with existing fans	75	kWh/Day
Energy consumption with BLDC fans	28	kWh
Energy savings	50	kWh
Annual energy saving	16,500	kWh/annum
Energy cost saving	1.15	INR Lakh/annum
Investment	1.25	INR Lakh
Simple payback period	13	Months

Replication Potential

This method can be adopted in all other units, where a similar kind of cast house drying is done. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 101: Technology Supplier Details – BLDC Energy Efficient ceiling fan

Description	Details
	Supplier - 1
Name of Company	Atomberg
Contact Person	Mr Rohit Sharma
Designation	Manager
Contact	Mobile: +91-9980993600
Address	Plot No. 130 B, TTC Industrial Area Shirawane, Navi Mumbai - 400706
	Supplier - 2
Name of Company	Canfan Private Limited
Contact Person	Mr Rajesh
Designation	Manager
Contact	Mobile: +91-9372413113
Address	20, Jeevarathnam, 2 nd Street, Shanthi Nagar, Ksr Nagar, Ambattur, Chennai, Tamil Nadu - 600053

4.2.3.2. Transvector nozzle in compressed air hose pipe for mould cleaning application

Baseline details

Utilization of compressed air for servicing application such as cleaning and drying is not uncommon and is also not a recommended practice for such applications. The service air points are being used at a pressure of 5.5 kg/cm², resulting in wastage of energy. Application of compressed air is common in all crockeryware units for mould cleaning purpose. For instance, using cleaning air from a hose of ½" dia. at 5.5 kg/cm², the amount of air consumed is approximately 336 cfm. Considering that the compressor operates at a specific energy consumption of 0.18 kW/cfm, the total energy consumed is 60 kW/hr.

For cleaning applications, the volume of airflow is the governing factor and not the operating pressure of the compressed air. Therefore, cleaning can be effectively achieved with a low pressure compressed air as well, thereby saving significant amount of energy.

As per the standards, reduction in the generation pressure in a compressor by 1 bar would reduce the power consumption by 6 - 10%. As the compressor is operated at higher pressure than is required, there is a scope of saving energy.

Proposed System

Utilize a dedicated compressor at low pressure or a blower (if pressure from blower is enough) for service air applications. In order to further optimize the compressed air intake, transvector nozzles can be utilized for cleaning applications.

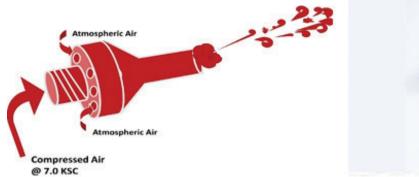


Figure 78: Transvector Nozzle

When compressed air enters the nozzle or jet, it fills a chamber with only one exit path — a thin annular orifice. As air passes through this orifice, the venturi effect of the orifice entrains the free surrounding air as it exits. This results in increased airflow volume more than supplied by the compressed air.

Hence the required volume and pressure required for cleaning application is met by consuming minimum amount of compressed air. Installing transvector nozzles indirectly saves load on the compressor and saves the energy consumed by the compressor. Results show that as much as 30 to 40% of the atmospheric air is utilized, thereby reducing the compressed air

Body Preparation Tile Pressing Dryi

171

consumption, which indirectly saves load on the compressor and saves the energy consumed by the compressor.

Cost Benefit Analysis

The expected energy savings by replacing 30 nozzles, cost saving potential of INR 0.29 Lakh can be achieved with an investment of INR 0.30 Lakh with a payback period of 12 months.

Table 102: Cost Benefit Analysis – Transvector Nozzles

Description	Value	Unit
Number of cleaning points considered	10	Nos.
Flow through 0.5" hose at 5.5 bar pressure (as per standard)	46	CFM
Savings in compressed air consumption per transvector nozzle	23	CFM
Present SEC	0.18	kW/CFM
Total savings per transvector nozzle	4.14	kW
Average annual operating hours	1,000	Hours
Annual savings	0.29	INR Lakh/annum
Investment required	0.30	INR Lakh
Simple payback period	12	Months

Replication potential

Application of compressed air is common in all crockeryware units for mould cleaning purpose and thus the implementation of transvector nozzle can be replicated in all the production units.

Energy & GHG Savings

aw Material Dosage Body Preparation Tile Pressing Drying

Technology Supplier Details

Table 103: Technology Supplier Details – Transvector Nozzle

Description	Details
Supplier Name	General Imsubs P. Ltd
Contact Person	Mr. Kaushalraj
Email Id	air@giplindia.com
Phone No	+91 9327030174
Address	General Imsubs P. Ltd. 3711/A, GIDC, Phase-IV, Vatva Ahmedabad 382445. India

4.2.3.3. Maximum demand controller for avoiding excess contract demand penalty

Unit: M/s ESSCE Infrastructure Pvt. Ltd., Tuticorin, Tamilnadu

Baseline details

In the above unit, from electricity bill it was observed that monthly average actual maximum demand is 291.55 kVA, which exceeds stipulated quota demand of 164.5 kVA. Whereas from the study it is observed that unit's average normal demand at full load operation (with all sections in load) should not go beyond 200 kVA. As a result, the unit is paying demand charges @ INR 350/kVA on basic recorded kVA demand as well as excess kVA demand charges after adjustment @ INR 700/kVA. There is a good potential to save money by avoiding maximum demand.

Proposed system

The unit has has installed a new generation Maximum Demand Controller with at least four relay outputs that are able to disconnect non-critical loads, on different time periods and avoid connecting loads simultaneously to reduce the instantaneous power.

Non-critical loads are those that do not affect the main production process or that are not essential, such as:

- Lighting
- Compressor
- Office Air-conditioning systems
- Field Pumps
- Packaging machines
- Canteen loads

Maximum Demand Controller should incorporate an internal power analyzer for the maximum demand calculation (it also records electrical parameters such as voltage, current and power). Every time controller detects a power excess, this will disconnect several lines with non-critical loads, reducing automatically the instantaneous power. This will ensure that the installation will reduce the demand, hence reduction of penalties or excess over drawl charges beyond quota limit of electricity bill.

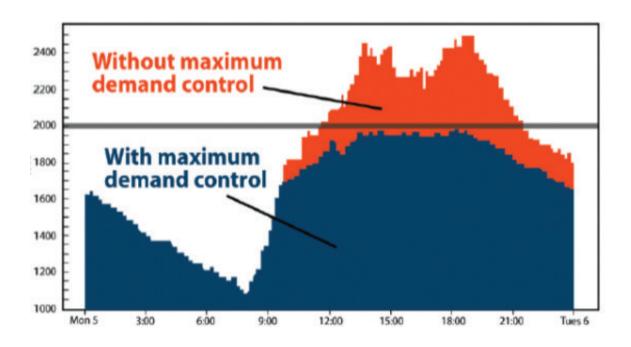


Figure 79: Demand Variation with and without demand control

Cost Benefit Analysis

By installing new generation maximum demand controller cost saving potential of INR 2.30 Lakh is achieved with an investment of INR 2.10 Lakh and a payback period of 11 months.

Table 104: Cost Benefit Analysis – Maximum Demand Controller

Description	Value	Unit
Excess demand	27.4	kVA
Excess demand charges	700	INR/kVA
Annual savings	2.30	INR Lakh/annum
Investment required	2.10	INR Lakh
Simple payback period	11	Months

Technology Supplier Details

Table 105: Technology Supplier – Maximum Demand Controller

Description	Details
	Supplier – 1
Supplier Name	YoUDIt Approaches Private Limited
Contact Person	Mr. Priyaranjan Sinha
Email Id	youdit@youdit.co.in
Phone No	+91-9811456950
Address	RPS Palms, Sec-88, Faridabad-121002
	Supplier - 2
Supplier Name	Tirupati Automation
Contact Person	Mr. Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415,+91-8000682152
Address	Shiv Plaza-2, Shop No-14 & 15, Matel Road, At- Dhuva, Ta. Wankaner, Dist. Morbi (Gujarat)

4.2.3.4. Installation of on-off controller system in agitator motor

Baseline details

The ceramic unit has underground tanks fitted with agitator motor in each tank for continuously mixing to maintain uniformity and avoid settling of solid particle. Initially when the fresh charge comes from ball mill/blunger, loading on motor is in between 60 to 75%. After some time as the raw material become uniform then loading on motor decreases, the loading on agitator motors is between 30% to 65%. These motors operate for about 24 hours in a day.

Implementation Details

Installation of automatically ON-OFF control system on the agitator motors do not affect the uniformity (quality) of slurry. It results in saving in electricity consumption in agitator motors. This system automatically switches ON agitator motors for about 10 minutes and then switches OFF for about 5 minutes. This means that in one hour, agitator motors operate for about 40 minutes and remain switch off for about 20 minutes. This could result in approximately 30% saving in electricity consumption of agitator motors.

Cost Benefit Analysis

The expected energy savings to be achieved by installing on-off controller system is 7,623 kWh annually. The annual monetary saving for this project is INR 0.50 Lakh, with an investment of INR 0.15 Lakh and a payback period of 4 months.

Table 106: Cost Benefit analysis – On off controller system in agitation system

Parameter	Values	UOM
Motor capacity	3	hp
Agitator quantity	4	Nos
Operational hours	10	Hours/day
Operational days	330	Days
Present power consumption in agitator	25,410	kWh/annum
Power saving	7,623	kWh/annum
Annual monetary savings	0.50	INR Lakh/annum
Investment	0.15	INR Lakh
Simple payback period	4	Months

Replication Potential

This method can be adopted in all the ceramic units. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 107: Technology Supplier details – On-off controller system for agitator motor

Description	Details
Supplier Name	Tirupati Automation
Contact Person	Mr. Bhavesh Vamja
Email Id	tirupatiautomation@gmail.com
Phone No	+91-9879411415,+91-8000682152
Address	Shiv Plaza-2,Shop No-14 & 15, Matel Road, At- Dhuva, Ta. Wankaner, Dist. Morbi (Gujarat)

4.2.3.5. Installation of Energy efficient motor in place of existing conventional motors in agitator system

Baseline details

The ceramic unit has underground tanks fitted with agitator motor in each tank, for continuously mixing to maintain uniformity and avoid settling of solid particle. Initially when the fresh charge comes from ball mill/blunger, loading on motor is in between 60 to 75%. After some time as the raw material become uniform then loading on motor decreases, the loading on agitator motors is in between 30% to 65%. This reduction in motor loading decreases the motor efficiency and thereby results in more electricity consumption. These motors operate for about 24 hours in a day.

In most of the units it was observed that the exiting motors for agitator are old and rewinding carried out many times. Energy efficiency of old and rewinded motors is low, resulting in energy loss.

Implementation Details

IE3 standard motors will improve motor operating efficiency as compared to old rewinded motors. IE3 motors have superior efficiency and can be operated from 50% to 100% since they have flat curve than conventional motors due to:

- Increasing the mass of rotor conductors/ conductivity.
- Precision air gaps to reduce current requirements.
- Improved winding and lamination design to minimize power consumption.

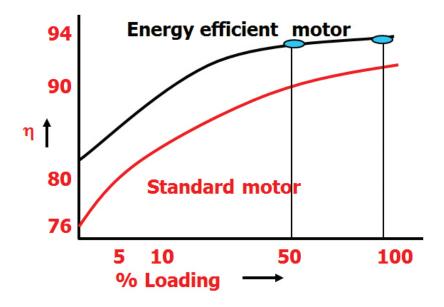


Figure 80: Percentage loading for energy efficient motor

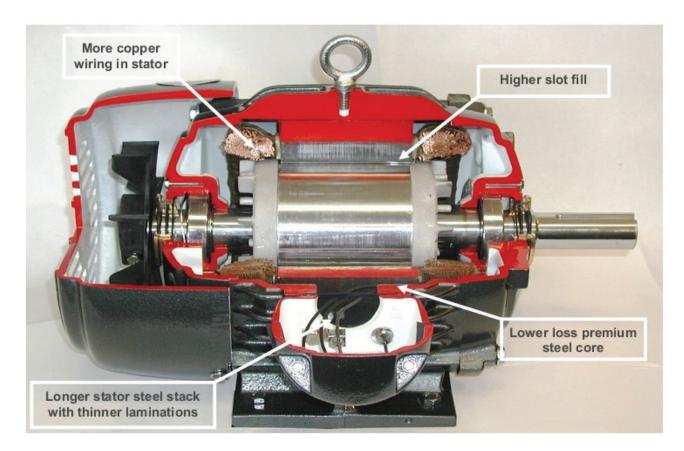


Figure 81: Energy efficient motor

Replacement of the existing standard efficiency motors by energy efficient motors will result in significant saving of electricity consumption in agitator motors.

Cost Benefit Analysis

The expected energy savings to be achieved by installing energy efficient motors is 1,964 kWh annually. The annual monetary saving for this project is INR 0.13 Lakh, with an investment of INR 0.50 Lakh and a payback period of 48 month.

Table 108: Cost Benefit analysis – Energy efficient motors in agitation system

Parameter	Values	Units
Motor capacity	3	hp
Agitator quantity	4	Nos
Existing Efficiency (Old motor)	80.00	%
EE motors Energy Efficiency(IE ₃)	86.70	%
Operational days	330	Days
Present power consumption in agitator	25,410	kWh/annum
Power saving	1,964	kWh/annum
Annual monetary savings	0.13	INR Lakh/annum

Parameter	Values	Units
Investment	0.50	INR Lakh
Simple payback period	48	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 109: Technology Supplier details – Energy efficient motors

Description	Details
	Supplier - 1
Name of Company	Rotomotive Drives
Contact Person	Mr Gagendra
Designation	Manager
Contact	Mobile: +91-9377511911
Address	223, Napa Talpad,, Gana Borsad Road, Taluka Borsad., Anand, Gujarat 388560
	Supplier - 2
Name of Company	Siemens
Contact Person	Mr Vedavyas Nayak
Designation	Cluster head - Drives
Contact	Mobile: +91-9632077220
Address	Birla Aurora, Level 21, Plot No. 1080, Dr. Annie Besant Road, Worli, Mumbai – 400030

4.2.4. Case studies in renewable energy

4.2.4.1. Solar rooftop system

Baseline Scenario

Electricity cost constitutes 15 to 20% of total energy cost in a ceramic unit. As the ceramic units are spread across a large land area with broad sheds having significant roof areas, there is significant potential for the units to generate solar power for in-house applications through rooftop solar photovoltaic (PV) systems. Renewable energy is deemed to be the best substitute for conventional fossil fuel. The ceramic unit has enough rooftop area which can be utilized to install solar PV for self-generation of electricity rather than purchasing from grid. Few ceramic units in Thangadh cluster have installed rooftop solar systems up to 50 kWp and operating successfully.

The electricity generation potential at a specific location depends on the solar radiation received. The solar radiation received during each month throughout a year at Naroda is given below:

Table 110: Site Specification – Solar radiation at Naroda

Parameters	
Location Latitude: - 23.05, Longitude: - 72.65	
Direct Normal Irradiance	5.8 kWh/m²/day
Wind	2.6 m/sec
Humidity	23%

The following graphs highlights solar irradiance:

Naroda, Ahmedabad, Gujarat, India Latitude: 23.05 Longitude: 72.65 Annual Average: 5.8 kWh/m²/day

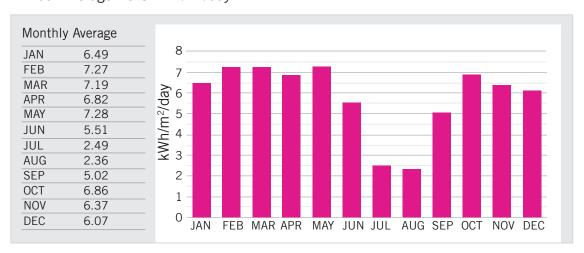


Figure 82: Solar Irradiance

taw Material Dosage Body Preparation Tile Pressing Drying Glazing Printing Firing

Proposed System

The ceramic units in Naroda cluster has a potential of installing up to 25 kWp solar rooftop which can generate around 0.40 Lakh units of electricity annually. The proposed system will be a grid-tied solar PV power unit consisting solar PV array, module mounting structure, power conditioning unit (PCU) consisting of maximum power point tracker (MPPT), inverter and controls & protections, interconnect cables, junction boxes, distribution boxes and switches. PV Array is mounted on a suitable structure. Grid-tied solar PV system is without battery and should be designed with necessary features to supplement the grid power during daytime. In grid-connected rooftop or small solar PV system, the DC power generated from solar PV panel is converted to AC power using power converter and is fed to the grid either of 33 kV/11 kV three phase lines or of 44oV/22oV three/single phase line, depending on the local technical and legal requirements.

These systems generate power during the daytime, which is utilized by powering captive loads and feeding excess power to the grid. In case the power generated is not sufficient, the captive loads are served by drawing power from the grid.

Net Metering Business Model – The net metering-based rooftop solar projects facilitate the self-consumption of electricity generated by the rooftop project and allow for feeding the surplus into the grid network of the distribution by the licensee. The type of ownership structure for installation of such net metering-based rooftop solar systems becomes an important parameter for defining the different rooftop solar models. In a grid-connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback on the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yield.

A commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand. The features / requirements for grid-connected rooftop solar PV system are as follows:

Table 111: Features/requirements for Grid Connected Solar PV Systems (Rooftop)

S. No.	Features / Requirements	Values
1	Shadow free roof area required	10 sq. m or 100 sq. ft. per kWp
2	Roof suitable for Solar PV system	Concrete/ GI/ tin shed (Asbestos may not be suitable)
3	Orientation of the roof	South facing roof is most suitable. Installation may not be feasible beyond 5 deg slope.
4	Module installation	Modules are installed facing South. Inclination of modules should be equal closer to the latitude of the location for maximum energy generation.

S. No.	Features / Requirements	Values
5	Cost of the rooftop solar PV system	MNRE issues benchmark cost for GCRT Solar PV system and the cost for general category states for 2019-20 are as follows. This includes cost of the equipment, installation and O&M services for a period of 5 years. Above 1 kWp and up to 10 kWp: INR 54,000/ kWp Above 10 kWp and up to 100 kWp: INR 48,000/ kWp Above 100 kWp and up to 500 kWp: /INR 45,000/ kWp Based on discussions with a few project developers, average cost of the system (as per market conditions) is as follows: For 10 kWp system, INR 49,000/ kWp For 50 kWp system, INR 37,000/ kWp For 100 kWp system, INR 37,000/ kWp
6	Useful life of the system	25 years
7	Annual energy generation from Rooftop Solar PV system	18% CUF in 1st annum, i.e., 1,578 kWh/ kWp / annum 0.7% degradation every annum for the useful life of the system. On an average, 1,452 kWh/ kWp/ annum would be generated over the useful life.

Merits

- PV panels provide clean & green energy. During electricity generation with PV panels, there is no harmful greenhouse gas emissions.
- ❖ Technology development in solar power industry is constantly advancing, which can result in lower installation costs in the future.
- PV panels have no mechanically moving parts, except in cases of sun-tracking mechanical bases; consequently, they have far less breakages or require less maintenance than other renewable energy systems (e.g. wind turbines).

Limitations

- The initial cost of purchasing a solar PV system is high, which includes paying for solar panels, inverter, batteries, wiring and for the installation.
- Although solar energy can be still collected during cloudy and rainy days, the efficiency of the system drops, which results in lower generation of energy.
- Installing a large PV system takes up a lot of space.

Cost Benefit Analysis

The expected savings by installation of 25 kWp solar rooftop is 0.40 Lakh kWh annually. The annual monetary saving for this project is INR 2.80 Lakh, with an investment of INR 10.00 Lakh and a payback period of 43 months.

Table 112: Cost Benefit Analysis – Solar PV Systems

Parameters	Value	UOM
Proposed roof top solar capacity	25	kWp
Annual units generation	1,600	kWh per kW/annum
Total energy generation	40,000	kWh/annum
Electricity cost	7	INR/kWh
Cost savings	2.80	INR Lakh/annum
Investment	10.00	INR Lakh
Simple payback period	43	Months

Technology Supplier Details

Table 113: Technology Supplier Details – Solar rooftop system

Description	Details
	Supplier – 1
Name of Company	Raijin Solar Energy
Contact Person	Mr Jaydip Agrawat
Designation	Managing Director
Contact	Mobile: +91-9574511117
Address	909 to 911, Anand Mangal-3, Behind Kalyan Jewellers, Ambawadi, Ahmedabad, Gujarat 380006

Description	Details
	Supplier – 2
Name of Company	Mysun Solar
Contact Person	Mr Pravin
Designation	Manager
Contact	Mobile: +91-9890285988
Address	Unit No 816, 817 & 818, 8th Floor, Tower-1 Assotech Business Cresterra Plot No 22, Sector 135, Noida, Uttar Pradesh- 201301

4.2.5. New & innovative technologies

4.2.5.1. Solar-Wind hybrid system

Baseline Scenario

Renewable energy is deemed to be the best substitute for conventional fossil fuel. Implementation of renewable energy posts various challenges, such as capital cost and consistency of power output, of which the latter can be solved by the installation of a Solar – Wind hybrid system. The rooftop area can be utilized to install a solar-wind hybrid system that can harness solar energy and wind energy to generate electricity.

Proposed System

The Solar – Wind Hybrid system is also known as solar mill. The solar mill generates:

- Daytime energy from the sun and wind
- Day & night energy from the wind
- Energy even on cloudy days
- More energy on hot sunny days due to cooling effect on solar panels by wind.

Figure 83: Solar-wind hybrid system

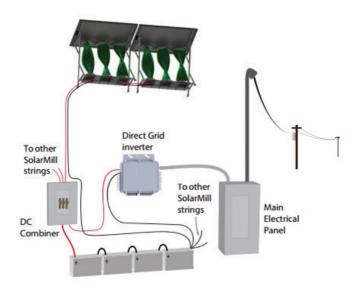


Figure 84: Hybrid mill connected to supply

It consists of three vertical axis wind turbines coupled to three permanent magnet generators. Automatic mechanical braking is provided once the wind speed goes beyond the cutoff speed. On-board smart electronics include dynamic Maximum Power Point Tracking (MPPT). It uses wind and solar resources on a 24/7/365 basis, allowing access to energy and very little interruption of services. The design life of solar mill is 25 years.

Specifications

The increase of renewable power per square foot of roof is obtained by combining two power sources. For a rooftop installation, combining solar and wind power is a complementary combination. For example, many locations are less windy in the middle of the day when the sun is at its peak and the wind picks up after dusk. Other advantages are solar module

providing protection for the wind portions of the mechanism from direct rain and hail and assisting with the direction of air into the turbines.

Since this compact installation is designed for rooftops and urban atmosphere, savonous type of wind turbine is chosen for its low running speed and relative insensitivity to turbulence. Power generation begins at a wind speed of 5 kmph. Independent MPPT for both wind and solar is calibrated. Maximum power point tracking (MPPT) is an algorithm included in charge controllers used for extracting maximum available power. The power from both wind and solar generation is routed into a common 48V DC bus which has built-in charge control for a lead acid battery bank.

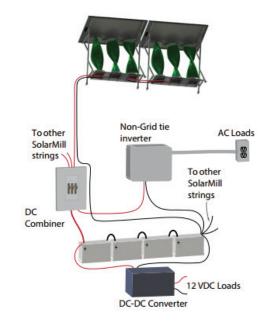


Figure 85: Hybrid mill connected to loads

Modes of Use

In grid-tied system, the bank of batteries is connected to one or more Direct Grid micro-inverters, which connect to the user's electrical panel. The inverters push power back to the grid efficiently when the batteries become fully charged.

aw Material Dosage Body Prepar

In off-grid storage, the batteries can be used to supply power to electrical devices in off grid settings. This electrical energy can power DC powered devices through a voltage converter or can power AC devices through an inverter.

Merits

- Power generation during daytime as well as night-time.
- Reliable power generation even on cloudy days.
- ❖ A compact hybrid solar mill to meet a portion of the unit's load after detailed study with vendors.
- Power generation starts at 2-5 m/s and mechanical braking occur beyond 18 m/s.
- The power generation can be monitored online.

Limitations

Higher investment.

Cost Benefit Analysis

The expected savings in electrical energy to be achieved by installation of a 25 kWp Solar - Wind hybrid system is 0.55 Lakh kWh units annually. The annual monetary saving for this project is INR 3.55 Lakh, with an investment of INR 25.00 Lakh and a payback period of 84 months.

Table 114: Cost Benefit Analysis – Solar Wind Hybrid Systems

Parameters	Value	UOM
Installed capacity of solar wind mill	25	kWp
Average generation	6.0	kWh
Area required	30	m²
Annual operating days	365	Days
Electricity tariff	6.5	INR/kWh
Average annual energy saving on conservative basis	54,750	kWh/annum
Annual cost savings	3.55	INR Lakh/ annum
Investment	25	INR Lakh
Simple payback Period	84	Months

Technology Supplier Details

Table 115: Technology Supplier Details – Solar-Wind Hybrid Systems

Description	Details
Supplier Name	Windstream Technologies
Contact Person	Mr. Bhaskar Sriram
Email Id	bhaskars@windstream-inc.com
Phone No	+91 99599 18782
Address	G2-SSH Pride, Plot 273, Road No-78, Jubilee Hills, Hyderabad 500096

4.2.5.2. Hydroxy gas combustion in kiln firing

Baseline Scenario

Ceramic manufacturing units are high energy consuming industries mainly thermal energy. Energy cost accounts for more than 35-40% of total production in a ceramic unit. Most energy consuming process is the firing process or kiln process. The primary energy use in ceramic manufacturing is for kiln. Natural gas is used for most drying and firing operations. Nearly 30% of the energy consumed is used for drying and over 60% of the energy consumed is used for firing.

Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones of kilns. Hydroxy Gas Generator (HHO) can be used to save 10-15% of fossil fuel consumption without altering the existing system.

Implementation Details

Hydroxy gas is the combination of hydrogen and oxygen gas produced from the electrolysis of water. HHO system is composed of HHO gas unit and hydroxy system combustion system (boiler, furnace etc.). The water fuelization system converts the water into hydroxy gas and makes thermal energy. From the Hydroxy gas, the heat generation device will convert into water energy which has calorific value of 2.56 kCal/Litre.

The ceramic unit can have hydroxy mixed combustion system (min 5% of total energy) to mix with natural gas in kiln firing and burn Hydroxy Gas with conventional fuel to achieve fuel savings. Hydroxy Gas Generator unit supplies Hydroxy Gas 24 hours into the combustion chamber of existing facility. The Hydroxy Gas is mixed with conventional fuel and burned together. This can result in saving of 5-10% in fuel consumption.

Figure 86: HHO Gas Generator

Cost Benefit Analysis

The expected energy savings to be achieved by installing HHO system is 1,008 Lakh kCal annually. The annual monetary saving for this project is INR 3.36 Lakh, with an investment of INR 20 Lakh and a payback period of 71 months.

Body Preparation Tile Pressing Drying

Table 116: Cost benefit analysis – HHO gas for kiln firing

Parameter	Value	UOM
Production	2.5	Tonne/day
Natural gas consumption before intervention	850	SCM/day
Operational hours	24	Hours /day
Operational days	330	Days/annum
Natural gas consumption after implementation of intervention	816	SCM/day
Annual gas savings due to implementation of measure	11,220	SCM/annum
Cost of natural gas	30	INR/SCM
Annual monetary saving	3.36	INR Lakh/ annum
Investment	20.00	INR Lakh
Simple payback period	71	Months

Replication Potential

This method can be adopted in all other units. Also, all new units & green field projects can implement this project.

Technology Supplier Details

Table 117: Supplier details – HHO gas for kiln firing

Description	Details
Name of Company	Kankyo Group
Email	infor@kankyo.global
Contact number	+91-9150001111
Address	No.11, Ayyavu Street, Ayyavu colony, Amminijikarai, Chennai

4.2.5.3. Installation of Energy Efficient burners in place of existing old conventional burners in kiln firing

Baseline details

In ceramic unit, kilns are the major source of fuel consumption. Natural gas is used mainly in kiln firing operations. Kiln performance is directly related to the temperature maintained & thermal efficiency at various zones in the kilns. In most of the ceramic units, conventional burners are used for fuel firing in kiln and there is no proper air flow control mechanism for maintaining proper combustion of fuel. The thermal efficiency of the kiln can be improved using high velocity burners. High velocity burners are better for tunnel and shuttle kiln wherein temperature uniformity is important.

About the technology

High velocity burners:

High velocity burners find application where the temperature uniformity within the job is very important for their quality and to have re-circulation of combustion gases.

Energy efficient high velocity burner is characterised with uniform and high flame length. Ceramic product requires temperature uniformly in entire job. High velocity burner with excess air control system can provide the uniform heat transfer for entire job, thereby increasing the quality of ware and efficiency of kiln.

In a kiln, the re-circulation of products of combustion can substantially contribute to the speed of heating and temperature uniformity. For low temperature ovens and dryers, suitable re-circulating fans are generally provided to achieve temperature uniformity. However, fans are not practical for high temperature furnaces and kilns.

Figure 88: High Velocity Burner with Flame

Figure 87: High velocity burner

Excess air can help in re-circulation, but this will result in wastage of fuel. 30% excess air for a 1,100°C kiln will require an additional 24% fuel than stoichiometric firing. In comparison, high velocity gases entrain and re-circulate more than seven times of its own volume will eliminate the need for fans or excess air.

Features of high velocity burners

- 300 to 1,650°C operating temperatures
- Inherently low emissions
- ❖ 18,000 to 5,00,000 kCal/hr capacity range
- ❖ 300°C preheated air
- Wide air/fuel ratio flexibility

Figure 89: Perfect combustion with correct air fuel to ratio

Figure 90: Improper air to fuel ratio

It is recommended to install the high velocity burner with precise control system for air to fuel ratio resulting in increasing the combustion efficiency and utilizing the heat uniformly through entire raw ware. 3-7% of fuel savings can be achieved.

Results:

- Reduced specific energy consumption in kiln
- Increased thermal efficiency
- Reduced fuel (natural gas) costs by 3-7%.

Cost Benefit Analysis

The expected energy savings to be achieved by using high velocity burners in kiln is 1,008 Lakh kCal annually. The annual monetary saving for this project is INR 3.36 Lakh, with an investment of INR 9.00 Lakh and a payback period of 32 months.

Table 118: Cost benefit analysis – Energy efficient burner

Parameter	Value	UOM
Production	2.50	Tonne/day
Natural gas consumption before intervention	850	SCM/Day
Operational hours	24	Hours/Day
Operational days	330	Days/annum
Natural gas consumption after implementation of intervention	816	SCM/day
Annual gas savings due to implementation of measure	11,220	SCM/annum
Cost of natural gas	30	INR/SCM
Annual monetary saving	3.36	INR Lakh/annum
Investment	9.00	INR Lakh
Simple payback period	32	Months

Technology Supplier Detail

Table 119: Technology supplier details – Energy Efficient Burner

Description	Details
Name of Company	Wesman Thermal Engineering
Contact Person	Mr Tushar Shah
Designation	General Manager
Contact	+91 9879206992
Address	A-442, Sakar-VII Nehru Bridge Corner, Ashram Road, Ahmedabad 380009 T: +91 (79) 40070474

5. Conclusion

In a typical tile & pottery ware manufacturing unit, kiln firing and raw material blending operations are dominant energy users. Significant energy efficiency improvement opportunities exist in kiln firing and raw material blending by installation of waste heat recovery system, energy efficient ceramic coating to reduce the radiation losses in kiln, low thermal mass in kiln furniture, utilization of renewable energy, high alumina balls in glaze ball mill in the place natural stone/pebbles, high speed blunger in place of ball mill and increased automation, etc. Through this compendium, some of the key technologies that are highly replicable in the cluster have been identified and for these technologies the case examples are included.

The identified technologies can be categorized into three heads, namely, Level 1, Level 2 and Level 3, based on the investment requirement and the payback, as follows:

Level 1: Low investment

- Waste heat recovery in roller kiln
- Waste heat recovery in tunnel kiln
- Reduction in ball mill power by installation of VFD on ball mill drive
- Retrofit energy efficient ceiling fans in place of conventional fans
- Transvector nozzle for compressed air sanitaryware mould cleaning application
- Maximum demand controller for avoiding excess contract demand penalty
- Installation of on-off controller system in agitator motor
- Installation of energy efficient motor in place of existing conventional motors in agitator system

Level 2: Medium investment

- High alumina balls in glaze ball mill in the place natural stone/pebbles
- Energy efficient coating to reduce the radiation losses in kiln and reduce fuel consumption
- Improvement of kiln insulation in kiln to reduce radiation losses
- Excess air control system to maintain optimum air to fuel ratio in kiln
- * Replacement of inefficient centrifugal fans with energy efficient fans in spray dryer
- Installation screw compressor with VFD in place of reciprocating compressor
- Power factor correction & Harmonic Mitigation at main LT incomer

- Low thermal mass for reduction of kiln furniture losses in tunnel kiln
- CFD application for improving heat transfer in spray dryer
- Energy conservation in compressor by modifying airline system

Level 3: High investment

- Solar rooftop system
- High speed blunger in place of ball mill for raw material grinding process
- Solar-Wind Hybrid system
- Hydroxy gas combustion in kiln firing in kiln
- Installation of Energy Efficient burners in place of existing old conventional burners in kiln firing
- Optimization of water consumption by installation of water softener plant
- Installation of Energy Management System
- Insulation improvement in Hot air generator for spray dryer
- Excess air control system to maintain optimum air to fuel ratio in Hot air generator (HAG)

The energy efficiency & renewable energy projects detailed in the case studies in this compendium indicate that there is a good potential for benefits in both low hanging and medium-to-high investment options. The ceramic units in Ahmedabad can implement the low hanging fruits (with smaller investments) faster, as with minimum or no investments, good savings can be achieved. However, for the high investment projects, a detailed review in the form of DPR can be prepared.

The Ahmedabad ceramic cluster should view this manual positively and utilize this opportunity to implement the best operating practices and energy saving ideas during design and operation stages and thus move towards achieving world class energy efficiency status.

For more details, please contact

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Vienna International Centre P.O. Box 300 · 1400 Vienna · Austria Tel.: (+43-1) 26026-0 ENE@unido.org www.unido.org

UNIDO Regional office in India UN House 55 - Lodi Estate, New Delhi-110 003, India office.india@unido.org

Bureau of Energy Efficiency

Government of India, Ministry of Power

4th Floor, Sewa Bhawan, R. K. Puram, New Delhi - 110 066 India Tel.: (+91) 011 2617 9699-0 gubpmu@beenet.in www.beeindia.gov.in