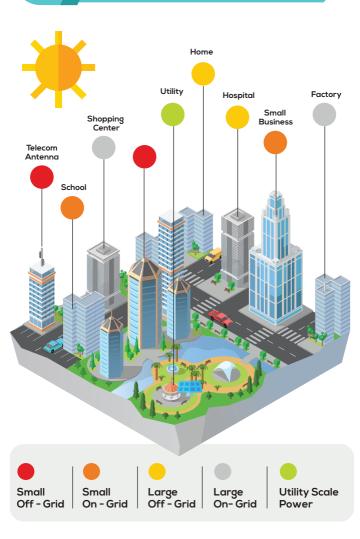
GEF - UNIDO - BEE PROJECT

on "Promoting EE/RE in selected MSME Clusters in India"

RENEWABLE ENERGY:

SOLAR PHOTO VOLTAIC



Varied Applications of Solar Photovoltaic

What is Solar Power

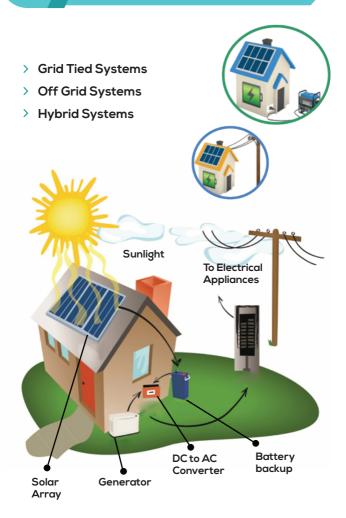
Types

Solar Photovoltaic is the conversion of Ligh (photons) into electricity(volts)

Solar Thermal is the conversion of light to heat and electricity(volts)

Solar Photovoltaic (PV)

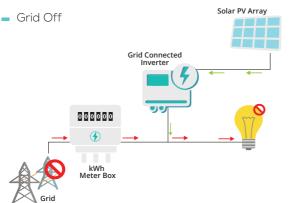
Solar PV System

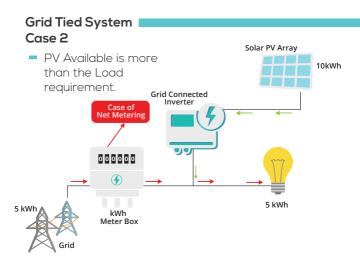


Solar cells - Solar cells within the PV panels act as a semi conductor that converts daylight into electricity

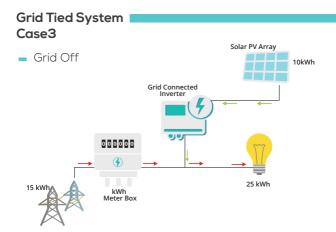
Inverter - The electricity generated by the panels is DC (direct current). This is then converted to AC (alternating current), using an inverter so it can be used in the home Electricity - Household appliances can be used as normal via the consumer unit

Export - When the household demand is less than supply from the PV system, any spare electricity can be sold back to the electricity supplier and, if eligible, feed in tariffs can be paid


Solar Rooftop System

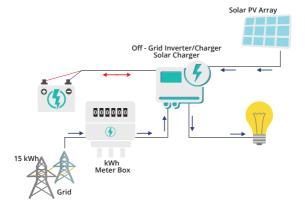

Solar Rooftop Working

Grid Tied System Solar PV Array 10kWh Solar Switched On Grid Connected Inverter 20kWh KWh Meter Box


Grid Tied System Case 1

Inverter trips and system switched off for the sake of safety, this type of safety is termed as Anti-islanding protection of the Inverter.

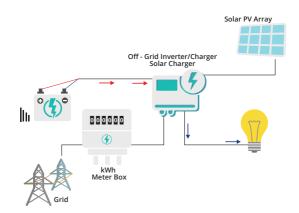
Inverter keeps on exporting power, load being in the priority, the extra power is fed back into the grid.


Inverter keeps on exporting power, the additional power is provided by the grid.

Solar Rooftop Calculation

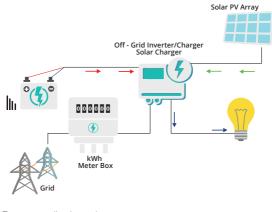
Shadow free space	> Area (sq.ft.) / 100 sq.ft = PV (kWp)
Panels facing South	> Directly associated with yield
Latitude	> Latitude + / - 30 = tilt angle of panels
Running Load	System Rating has to be = or < than the running load to prevent back feed
Type of Roof	> Flat , inclined , RCC , tin sheet, unleveled
Location of LT Panel	> For Calculation of Length and size of cables
Type of connection	> Single Phase / Three Phase
Rating of DG	DG must be 2.5 – 3 times of the rating of PV or ideally 30% load must be on DG (Typ. PV shall be 50% of grid)
Net Metering	> If allowed by local DISCOM

Off-Grid System


 System works on Battery inspite of Grid is present. on PV > Battery > Grid priority basis.

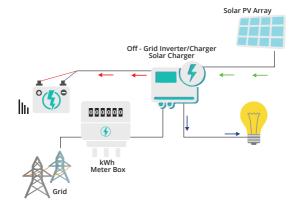
- > Battery Charged....discharging...
- > Grid Absent.
- > PV Absent

Off-Grid System Case 1


System working as standalone

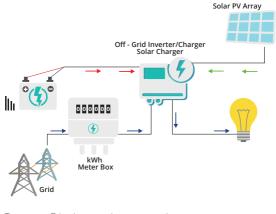
- > Battery Charged....discharging...
- > Grid Absent.
- > PV Absent

Off-Grid System Case 2


System working on Solar + Battery.

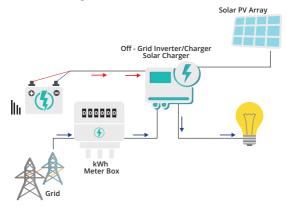
- > Battery discharging.
- > PV Present.
- > Load is more than Solar Available.
- > Grid not present.

Off-Grid System Case 3


System working on Solar.

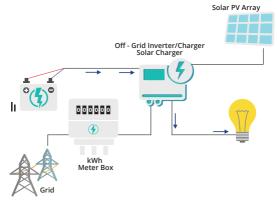
- > Battery Charging.
- > PV Present.
- > Load is less than Solar Available.
- > Grid not present.

Off-Grid System Case 4


Transition Stage.

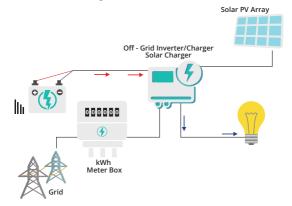
- > Battery Discharged to set value.
- > PV Present.
- > Load is more than Solar Available.
- > Grid present.

Off-Grid System Case 5


Transition Stage.

- > Battery Discharged to set value.
- > PV not Present.
- > Load is more than Solar Available.
- > Grid present.

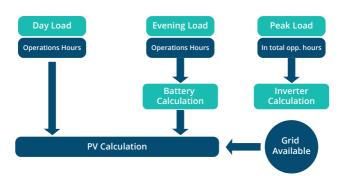
Off-Grid System Case 6


Transition Stage.

- > Battery Charged to a set value.
- > PV not present.
- > Load is ON.
- > Grid present.

Off-Grid System Case 7

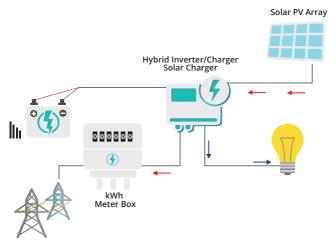
System working as standalone



- > Battery Discharged to 80% of Capacity.
- > Grid Absent.
- > PV Absent
- > Loads Cut off, flickers may be seen.

Solar Rooftop Calculations

Off-Grid System


Inputs required

Solar Rooftop

Hybrid System

 System is basically a hybrid of Off-Grid and Grid connected systems.

- > All working is like offigrid, accept the property of getting connected with grid when ever grid appears.
- > If the Battery is fully charged, the inverter exports power back into the grid.

Reverse Power Prevention for Solar Power Plants

Sample Payback Summary

Project Size Cost/ Watt Total Project Cost Accelerated Depreciation	kWp per Wp INR INR	 100 54 54,00,000.00 21,60,000.00
(Ist Year @ 40%) Accelerated Depreciation (2nd Year @ 40%)	INR	 21,60,000.00
Accelerated Depreciation (Balance Years @ 10%)	INR	 5,40,000.00
(After 25 years @10%)	INR	 5,40,000.00
(@34.61%) 1st year	INR	 7,47,576.00
Income Tax Saving	INR	 7,47,576.00
(@34.61%) 2nd year Income tax saving	INR	 1,86,894.00
for balance years Electricity Tariff (Rs/Unit)	INR	 8.5
Electricity Generation/KW Electricity Generation	kWh /year kWh /year	1450 1,45,000
per annum Electricity Tariff Escalation	%	 2% 600.00
O&M Escalation	INR	
per annum Plant Insurance: 0.5% ————— of Asset value	%	 5%
Rate of Interest	INR	 67,500.00
System Generation ————— Degradation	%	 10%
Total units generated ————— over project life	%	 1%
Total Project Cost	kWh	 32,21,590
(including all expenses) Per Unit Cost IRR Payback Time	INR INR Years	 83,31,126.00 2.59 26.2

Payback Graph

Payback time is appx 3.5 years

association with the Customers

Operation & Maintenance .. is not just house keeping!


Improper Cable Routing

Cable Heating up

Damage finally!

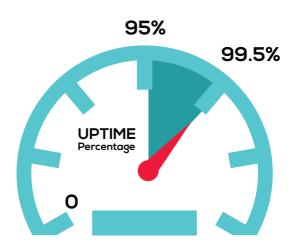
Ground clearance issues

MC4 Connectors / Y junctions ... poor crimping?

Module issues ...Stray bullets ?

Maximising Plant Uptime

Process and Standards


- > IMS Processes followed and complied to
 - ISO 9001 Process
 - ISO 140001
 - OHSAS 18001
- > 3 Dimensional SOPs focussing on
 - Quality
 - Safety

>

Environment

Operation Excellence – Continual improvement cycle Inputs to Design / Procurement / Construction teams

Job Authorization for Skill Development

Shutdown Maintenance

- > Breakdown impact analysis
- > Stringent SLAs with Vendors
- > Optimum Spares and Inventory management
- > Cluster-wise Provisions for Spares

Preventive Maintenance

- > As per Past Experience and OEM guidelines
- > Scheduled maintenance
- > Need based maintenance

Predictive Maintenance

- > Condition based Monitoring
- > Data analysis by Domain Experts
- > Investigation and experiments
- > Equipment Benchmarking
- > Plant characterization

Internal Target set to deliver minimum 99.0% Plant Availability

Parameter Benchmarking

(Inter Plant)

- > Plant Uptime
- > PR %
- > Specific Yield
- Equipment Benchmarking (Inter Plant)
- > PV Module
 - Efficiency
 - Degradation Trends
- > Transformer
 - Efficiency
 - Temperature
 - Losses

Equipment Benchmarking

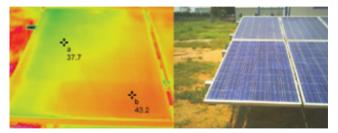
(Intra Plant)

> Zone Monitoring

- Efficiency
- Generation
- Inverter
- Transformer

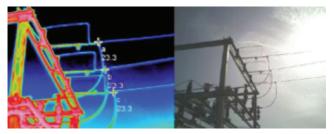
- > Aux. consumption
- > Generation Losses
- > Internal Audit Reports
 - > Inverter
 - Efficiency
 - Temperature

- > Combiner Box Deviation
 - Specific Yield
- > String Deviation
 - Current



Internal Target set to deliver 101% of the Guaranteed performance

Predictive and Conditional Maintenance


Thermal Imaging of PV Modules

Inspection Images - IR Thermographic & Vsual Module S/N: 11306040752340, Hot spot defect category: No hot spot

Thermal Imaging of DP Structure

Evacuation Point : No abnormity found

Communication Check of combiner boxes

Inverter parameter monitoring

Key Challenges faced during O&M

Issues	Activity Affected	Mitigations
Grid Issues • Throttling • Grid Variations and Instability	Equipment Underperformance Downtime Frequent Tripping Under Efficiency	Protection Contract Management Local Discom Co-ordination
Margin Pressures Oth contract rates lowered by about 30 %	Customer Satisfaction • Services expectation and Quality remains same in spite of reduce prices • Increased competition	Cost Optimisation Command Centre for central monitoring Central Spares New initiatives to reduce manpower, security costs and module cleaning costs
Local Issues • Vandalism and Theft • May cause disruptions • Remote locations	Module Cleaning Vehicle Hire / Security • Arm Twisting for Rates • Minimum employment requirements	LocalInclusion • Focus on CSR and Sustainability • Job creation and skill trainings • Water conservation

Indian O&M Scenario calls for plant specific, dynamic, and localised solutions

Promoting Energy Efficiency & Renewable Energy in Selected MSME Clusters in India

To develop and promote a market environment for introducing energy efficiency and enhanced use of renewable energy technologies in process applications in the selected energy-intensive MSME clusters under GEF UNIDO BEE project.

The main objective of the project is to increase the capacity building of suppliers of EE/RE product and service providers

- Desclaimer

Cll has made every effort to ensure the accuracy of information presented in this manual. However, neither Cll nor any of its employees can be held responsible for any financial consequences arising out of the use of information provided herein. However in case of any discrepancy, error etc, same may please be brought to the notice of Cll for appropriate corrections.

