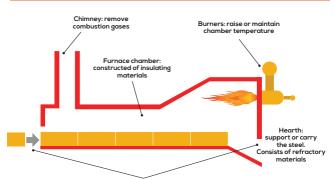


GEF - UNIDO - BEE PROJECT


on

"Promoting EE/RE in selected MSME Clusters in India"

FUEL FIRED FURNACES

COMPONENT OF FURNACE

Charging & discharging doors for loading & unloading stock

TYPES OF FURNACES

Forging Furnace

- > Used to preheat billets/ingots
- > Use open fireplace system with radiation heat transmission
- > Temp 1200-1250 °C
- Operating cycle
 Heat-up time > Forging time > Soaking time
- Fuel use: depends on material and number of reheats

Re-rolling Mill Furnace [Batch type]

- > Box type furnace
- > Used for heating up scrap/ingots/billets
- > Manual charge / discharge of batches
- **>** Temp 1200 °C
- > Operating cycle: heat-up, re-rolling
- > Output 10 15 tons/day
- > Fuel use: 180-280 kg coal/ton material

Re-rolling Mill Furnace [Continuous Pusher Type]

- > Not batch, but continuous charge and discharge
- **>** Temp 1250 °C
- Operating cycle: heat-up, re-rolling
- > Output 20-25 tons/day
- Heat absorption by material is slow, steady, uniform

Other Furnaces are

Continuous reheating furnace

- > Pusher Type
- > Walking beam type
- > Walking hearth furnace
- > Continuous recirculating Bogie furnace
- > Rotary hearth Furnace

ASSESSMENT OF FURNACES

Heat Losses Affecting Furnace Performance

ASSESSMENT OF FURNACES

Calculating Furnace Performance

- Direct Method -Heat in th

Thermal efficiency of furnace

Heat in the stock / Heat in fuel consumed for heating the stock

Heat in the stock Q: $Q = m \times Cp(t1 - t2)$

Q = Quantity of heat of stock in kCal
 m = Weight of the stock in kg
 Cp= Mean specific heat of stock in kCal/kg oC
 t1 = Final temperature of stock in oC
 t2 = Initial temperature of the stock before it enters the furnace

- Indirect Method -

d) Loss due to openings in furnace e) Loss through furnace skin Total losses	= 5.56 % = 2.64 %
b) Loss due to moisture in fuelc) Loss due to H2 in fueld) Loss due to enonings in furnação	= 1.36 % = 9.13 % - 5 56 %
a) Flue gas loss b) Loss duo to maisturo in fuol	= 57.29 %

100% - 76% = 24%

Typical efficiencies for industrial furnaces

Furnace type	Furnace type
Low Temperature furnaces	
a. 540 – 980 °C (Batch type)	20-30
b. 540 – 980 °C (Continous type)	15-25
c. Coil Anneal (Bell) radiant type	5-7
d. Strip Anneal Muffle	7-12
High temperature furnaces	
a. Pusher, Rotary	7-15
b. Batch forge	5-10
Continuous Kiln	
a. Hoffman	25-90
b. Tunnel	20-80
Ovens	
a. Indirect fired ovens (20 oC –370 °C)	35-40
b. Direct fired ovens (20 oC −370 °C)	35-40

ENERGY EFFICIEN	CY
Operation at the optimum furnace temperature	2. Proper heat distribution
3. Operation at the optimum furnace temperature	4. Reducing heat losses from furnace openings
5. Maintaining correct amount of furnace draft	6. Optimum capacity utilization
7. Waste heat recovery from the flue gases	8. Minimize furnace skin losses

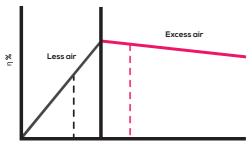
Complete combustion with minimum excess air

> Importance of excess air

- Too much: reduced flame temp, furnace temp, heating rate
- Too little: unburnt in flue gases, scale losses

> Indication of excess air: actual air / theoretical combustion air

> Optimizing Excess Air


- Control air infiltration
- Maintain pressure of combustion air
- Ensure high fuel quality
- Monitor excess air

Air quantity for combustion

An important parameter for energy efficiency

- Theoretical air requirement can be estimated from combustion theory
- Excess air required
- Quantity of excess air depends on mixing capability of fuel
- Mixing capability
 - Solid < Liquid < Gas
- Lesser the mixing capability
 - more the quantity of excess air

Effect of air quantity on efficiency

Air quantity

Different flame types of a burner depend on oxygen supply. On the left a rich fuel with no premixed oxygen produces a yellow sooty diffusion flame; on the right a lean fully oxygen premixed flame produces no soot and the flame color is produced by molecular radicals, especially CH and C₂ band emission

ENERGY EFFICIENCY OPPORTUNITIES

Proper heat distribution

> When using burners

2

- Flame should not touch or be obstructed
- No intersecting flames from different burners
- Burner in small furnace should face upwards but not hit roof
- More burners with less capacity (not one big burner) in large furnaces
- Burner with long flame to improve uniform heating in small furnace

- Hear distribution in furnace -

Alignment of burners in furnace

3) Operation at the optimum furnace temperature

Operating at too high temperature: heat loss, oxidation, decarbonization, refractory stress

> Automatic controls eliminate human error

Slab Reheating furnaces	1200°C
Rolling Mill furnaces	1200°C
Bar furnace for Sheet Mill	800°C
Bogie type annealing furnaces	650°C -750°C

4 Reducing heat losses from furnace openings

> Heat loss through openings

- Direct radiation through openings
- Combustion gases leaking through the openings
- Biggest loss: air infiltration into the furnace

> Energy savings methods

- Keep opening small
- Seal openings
- Open furnace doors less frequent and shorter

5) Maintaining correct amount of furnace draft

- > Negative pressure in furnace: air infiltration
- Maintain slight positive pressure
- > Not too high pressure difference: air ex-filtration

Heat loss only about 1% if furnace pressure is controlled properly!

ENERGY EFFICIENCY OPPORTUNITIES

6 Optimum capacity utilization

> Optimum Load

- Under loading: lower efficiency
- Overloading: load not heated to right temp

> Optimum Load Arrangement

- Load receives maximum radiation
- Hot gases are efficiently circulated
- Stock not placed in burner path, blocking flue system, close to openings

7 Waste Heat Recovery System

> When do we recover waste heat?

- When exit temperature high
- When furnace runs on a continuous basis

> Advantages of WHR

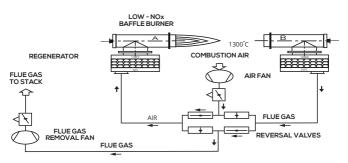
- Reduction in fuel loss
- Reduction in furnace heating time

Every 22°C drop = 1% efficiency increase

Advanced Burners

Recuperative Radiant Tube Heaters

- Good replacement for electrical heaters, where high temperature required
- > Hot gas not in contact with stock
- Combustion air preheated-600 to 700 deg C
- > Saving potential : 20 %



Regenerative burners

> Saving potential

- higher than recuperative burners
 - (since pre-heat temperature of air is higher-900 to 1100 °C)

> Tailor-made to suit individual furnaces

ENERGY EFFICIENCY OPPORTUNITIES

8 Minimize furnace skin losses

- > Choosing appropriate refractories
- Increasing wall thickness
- > Installing insulation bricks (= lower conductivity)
- Planning furnace operating times
 - Under loading: lower efficiency
 - Overloading: load not heated to right temp

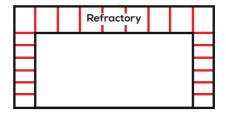
CERAMIC FIBRE

- > Wonder refractory
- > Specific heat -Comparable to refractory brick and insulating brick Installing insulation bricks (= lower conductivity)
- > Density is very very low

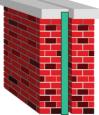
Property	Ref.brick	Ins.brick	Ceramic fib.
SP. heat (Kcal/kg °C)	0.22	0.22	0.27
Ther. Condy (Kcal/m °C	0.22	0.20	0.20
Density (Kg/m³)	2000	1000	125

Ceramic Fibre the Pros and Cons

- > Can withstand upto 1425 °C
- > Not affected by chemicals
- Cannot take mechanical stresses
- Cannot take flame impingement


Ceramic fibre to be sandwiched between two layers of refractory

Replace existing refractory with Ceramic fibre


Background

Bell furnace

- Required temperature
 600 to 650°C
- > Surface temperature
 - 150°C

ABOUT PROJECT

Promoting Energy Efficiency & Renewable Energy in Selected MSME Clusters in India

To develop and promote a market environment for introducing energy efficiency and enhanced use of renewable energy technologies in process applications in the selected energy-intensive MSME clusters under GEF UNIDO BEE project. The main objective of the project is to increase the capacity building of suppliers of EE/RE product and service providers

- Desclaimer -

Cll has made every effort to ensure the accuracy of information presented in this manual. However, neither Cll nor any of its employees can be held responsible for any financial consequences arising out of the use of information provided herein. However in case of any discrepancy, error etc , same may please be brought to the notice of Cll for appropriate corrections.

